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Variational studies of the t-J model on the square lattice based on infinite projected-entangled pair states
confirm an extremely close competition between a uniform d-wave superconducting state and different
stripe states. The site-centered stripe with an in-phase d-wave order has an equal or only slightly lower
energy than the stripe with antiphase d-wave order. The optimal stripe filling is not constant but increases
with J=t. A nematic anisotropy reduces the pairing amplitude and the energies of stripe phases are lowered
relative to the uniform state with increasing nematicity.
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The discovery of high-temperature superconductivity
in the cuprates stimulated intense study of the t-J model
[1]—the strong coupling limit of the Hubbard model [2,3],
on a square lattice. But open issues remain concerning the
phase diagram at underdoping, especially with regard to the
stability and form of stripe phases. Initially, these were
considered to be simple charge- and spin-density waves with
enhanced hole doping along π-domain walls in an anti-
ferromagnetic (AF) background at a filling of one hole per
unit length per stripe [4–7]. Later theoretical work found that
half-filled stripes with coexisting d-wave superconducting
(SC) order [8,9], or even more complex order with inter-
twined domain walls in both the AF and d-wave SC order
[10], are very close competitors to states with uniform hole
density. The proposal by Berg et al. [11], that the latter stripe
form explained the observation by Li et al. [12] of two-
dimensional superconductivity order over a large temper-
ature range in La2−xBaxCuO4 around x ¼ 1=8, stimulated
further theoretical investigations. Surprisingly, many calcu-
lations on the t-J model using a range of different approx-
imations found small energy differences between states with
uniform hole density and the stripe states [10,13–16]. This
near degeneracy between states with clearly different order-
ing suggests an underlying general physical explanation.
This interpretation is further supported by the experimental
observation of the stripe state in a specific hole density range
in some cuprates. (See Refs. [17–23] for a review).
In this Letter, we use an improved version of the powerful

infinite projected entangled-pair states (iPEPS)method on the
t-J model. This method yields the lowest energy variational
wave functions to date for infinite (or very large) two-
dimensional systems. It gives remarkably small energy
differences for the very different stripe and uniform states.
Interestingly, as the accuracy of the method is increased, the
energy differences between the competing states become
smaller. Our version of the t-J model ignores the usual next-
nearest neighbor hopping for computational simplicity, but
this omission did not affect the near degeneracies in the earlier

calculations [10,14,15], suggesting an underlying general
physical explanation, which remains to be uncovered.
The near degeneracy, on the one hand, makes the identi-

fication of the true ground state extremely difficult; on the
other hand, it implies that the t-J model in the physically
relevant regime is at or close to a phase transition between
competing phases. So, small additional and/or anisotropic
terms in themodel canstabilizeonephaseover theother.Since
these additional terms will depend on the particular cuprate
compound, it can explainwhystripes are only found in certain
cuprates. As an example of a modified t-J model, we study
the effect of a nematic anisotropy, which can be introduced
by the tilting pattern of the CuO6 octahedra, e.g., in the low-
temperature tetragonal (LTT)phaseofLa2−xBaxCuO4 around
x ¼ 1=8, and can confirm that it lowers the energy of the
stripe state relative to the uniform state.
Model.—The t-J model is given by the Hamiltonian

Ĥ ¼ −t
X
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with hiji nearest-neighbor pairs, σ ¼ f↑;↓g the spin index,
n̂i ¼

P
σ ĉ

†
iσ ĉiσ the electron density, and Ŝi the spin 1=2

operator on site i, and ~ciσ ¼ ĉiσð1 − ĉ†iσ̄ ĉiσ̄Þ.
Method.—Our results are obtained with (fermionic)

iPEPS—a variational tensor network ansatz to efficiently
represent two-dimensional ground states in the thermody-
namic limit [24–27]. It can be seen as a natural generali-
zation of matrix product states (the underlying ansatz of the
density-matrix renormalization group method [28]) to two
dimensions. Originally, it was developed for spin systems
and, later, was extended to fermionic systems [27,29–36].
The ansatz consists of a supercell of rank-5 tensors which is
periodically repeated on the lattice. Each tensor has a
physical index and four auxiliary indices which connect to
the nearest-neighboring tensors. The accuracy of the ansatz
can be systematically controlled by the bond dimension D
of the auxiliary indices (each tensor contains 3D4 varia-
tional parameters). AD ¼ 1 iPEPS simply corresponds to a
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site-factorized wave function (product state), and by
increasing D, quantum fluctuations (or entanglement)
can be systematically added to the state. A similar ansatz
has been employed in Ref. [37]; however, here we use a
more accurate optimization scheme (the full update, cf.
Ref. [27]) to find the best variational parameters. We also
push the simulations to larger bond dimensions by exploit-
ing U(1) symmetries [38,39] and a more efficient con-
traction method (see Supplemental Material [40]).
We compare various competing low-energy states in the

t-J model by using different supercell sizes in iPEPS, e.g., a
uniform state with d-wave SC order coexisting with AF
order at low doping, and different types of stripe states,
with examples presented in Fig. 1. Each panel shows
several order parameters computed with iPEPS: the hole
density δi ¼ 1 − hn̂ii and the local magnetic moment Ŝzi on
each site i, and the singlet pairing amplitude Δ ¼ hĉi↑ĉj↓ −
cj↓ĉi↑i=

ffiffiffi
2

p
between neighboring sites i and j.

Uniform d-wave state.—We first discuss the results
obtained with an iPEPS consisting of only two tensors, one
for each sublattice, for J=t ¼ 0.4. The lowest energy state we
find with this ansatz has a uniform charge distribution and a
d-wave SCorder, coexistingwithAForder at low doping (see
[U] in Fig. 1). A similar state has been found in several
previous studies [10,46–52]; however, herewe obtain a lower
variational energy for this state than the best result from fixed-
node Monte Carlo (FNMC) calculations combined with two
Lanczos steps (FNMCþ 2L) [52], seeFig. 2(a). For example,

at doping δ ¼ 0.12, we find an energy per hole Ehole ¼
ðEs − E0Þ=δ ¼ −1.578t forD ¼ 14, where Es is the energy
per site and E0 ¼ −0.467 775 the value at zero doping taken
fromRef. [53]. This value is considerably lower than Ehole ¼
−1.546t obtained for a system with N ¼ 162 in Ref. [52],
where the energy increases with system size.
In Fig. 2(b), we present results for the singlet pairing

amplitude Δ of the uniform state as a function of doping,
for D ¼ 6, D ¼ 12, and the extrapolated data in 1=D (see
the Supplemental Material [40] for additional data). It is
suppressed with increasing D, but tends to a finite value in
the infinite D limit, Δ ≈ 0.025 for δ ¼ 0.12. The local
magnetic moment m shown in Fig. 2(c) decreases rapidly
with doping, and is also suppressed with increasing D. For
δ≲ 0.1 the extrapolated value of m in 1=D is finite, but it
vanishes for larger δ. Thus, we find coexisting d-wave and
antiferromagnetic order for δ≲ 0.1 in close agreement with
previous results [10,47–52].
Stripe states.—Next we focus on vertical stripe states,

which are obtained with supercells of size P × 2 with P the
periodicity of the stripe. Each stripe has a certain width W
given by the periodicity of the charge density wave order
(which is not necessarily equal to P), and a filling measured

0.24

0.08

0.16 0.01 0.15 0.24

0.00

0.22

0.17

0.14

0.27

0.14

0.27

0.22

0.18

0.28

0.08 0.08

U

0.10
0.08

0.10 0.08 0.14 0.18 0.14 0.08
0.08 0.24 0.16 0.01 0.15 0.24

0.22 0.14 0.14 0.22 0.28
0.00 0.17 0.27 0.27 0.18

W5 Diag

W5AP

FIG. 1 (color online). Competing low-energy states in the t-J
model found with iPEPS simulations using different supercells
(J=t ¼ 0.4). The diameter of the red dots (length of the arrows) is
proportional to the local hole density (local magnetic moment) with
average values given by the first (second) row of numbers below a
panel. The width of a bond between two sites scales with the
(singlet) pairing amplitude on the corresponding bond with a
different sign in the horizontal and vertical direction indicated by
the two different colors. Uniform (U) d-wave superconducting
state with coexisting antiferromagnetic order (δ ∼ 0.1, D ¼ 14),
where two different tensors for the two sublattices have been used.
A site-centered vertical stripe state of width W ¼ 5 (W5) with in-
phase d-wave order in a 5 × 2 supercell (δ ∼ 1=8,D ¼ 14). A site-
centered stripe state of width W ¼ 5 with antiphase d-wave order
(W5AP) in a 10 × 2 supercell (δ ∼ 1=8, D ¼ 10). A fully-doped
(ρl ¼ 1), insulating diagonal (Diag) stripe in a L × L cell using L
different tensors at a doping δ ¼ 1=L (here L ¼ 5, D ¼ 14). We
considered sizes up to L ¼ 11.
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FIG. 2 (color online). (a) Energies of the competing states as a
function of inverse bond dimension for δ ¼ 0.12. The horizontal
lines show the best fixed-node Monte Carlo result (with two
Lanczos steps) from Ref. [52]. (b)–(c) Order parameters of the
uniform d-wave state as a function of doping: (b) the pairing
amplitude Δ and (c) the local magnetic moment m. The extrapo-
lated values have been obtained from a linear extrapolation of the
finite D data, which provides a rough estimate of the order
parameters in the infinite D limit. (d) Order parameters of the
W5 stripe state as a function of inverse D for δ ¼ 0.12: the
modulation strength of the local hole density Δn ¼ nmax − nmin
and of the local magnetic moment Δm ¼ mmax −mmin, where
n ¼ hn̂i and m ¼ jhŜzij are evaluated on each lattice site in the
supercell. The filled squares show the maximal singlet pairing jΔj.
The order parameters decrease with increasingD, but remain finite
in the infinite D limit. The dashed lines are a guide to the eye.
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in holes per unit length of a stripe, ρl ¼ Wδ. In Refs. [8,37],
it was found that the preferred width of a stripe increases
with decreasing doping (see also the Supplemental Material
[40]); i.e., depending on the doping, we need to use different
supercell sizes. To simplify the discussion, we will focus on
W ¼ 5 stripes in the following which in our calculations are
energetically favored for dopings around δ ∼ 0.12 [54].
The lowest energy W ¼ 5 stripe we find is the W5 state

shown in Fig. 1. This state exhibits a modulation in the
charge-, spin-, and superconducting order, where the
maximal doping is centered on a row of sites, called
site-centered stripe (as opposed to bond-centered stripes,
see Refs. [21,55–57] for a discussion). Figure 2(d) shows
that both the amplitudes of the charge and spin modulation
decrease with increasing bond dimension D but, then, tend
to a finite value in the infinite D limit, which indicates that
in this state the stripe order persists in this limit.
The d-wave pairing in the W5 stripe state has the same

sign structure on neighboring stripes, i.e., in-phase order. In
agreement with previous studies [10,13–15,58,59], we also
find a competing low-energy state which has antiphase order
(W5AP in a 10 × 2 supercell shown in Fig. 1) with an energy
per hole that is only slightly higher (of the order of 0.001t for
D ¼ 10) than the in-phase stripe; see the Supplemental
Material [40] for additional data. Since the energy difference
between the two states is very small, it is conceivable that
antiphase stripes get stabilized by additional terms (such as a
next-nearest neighbor hopping [10]). This further supports
the proposal that antiphase ordered stripes are the reason for
the lack of 3D superconductivity above T ¼ 4 K in
La2−xBaxCuO4 around x ¼ 1=8 [12,60], because they lead
to a suppression of the interlayer Josephson coupling
between the copper-oxygen planes [11].
Finally, we also find diagonal stripes with a low energy,

e.g., the state shown in the right panel in Fig. 1. These states
are obtained by using supercells of size L × L with L
different tensors arranged in a diagonal stripe pattern. These
stripes are insulating and have a filling of ρl ¼ 1 holes per
unit length. However, we will show in the next section that
diagonal stripes are energetically unfavorable at large D.
Uniform vs stripe states.—So far, we have found various

low energy states in different supercells. Next, we make a
systematic comparison of their energies for J=t ¼ 0.4 and
δ ¼ 0.12, to determine which of the competing states is the
true ground state. For a fixed value ofD ¼ 8 we find that the
uniform state has a higher variational energy than the W5
stripe state, in agreement with previous findings [37].
Furthermore, it turns out that diagonal, insulating stripes—
which were not considered in Ref. [37]—are even lower in
energy for D ¼ 8. However, from this we cannot conclude
that the diagonal stripe state is the ground state, but we must
examine how the energies of the competing states change
upon increasingD, shown in Fig. 2(a): All energies decrease
with increasing D, however, with different slopes, such that
theW5 stripe state becomes lower in energy than the diagonal
stripe state for D > 12. For D ¼ 14, the W5 stripe state has

the lowest energy, but since the energy of the uniform state
decreases faster (at least for D < 12) than the energy of the
W5 state, it may get lower (or equal) in the largeD limit. Such
a crossing of energies of competing states as a function ofD
has already been found in another model [61], and it is also a
possible scenario for the present case.
Even if we cannot conclusively determine the ground

state based on our results, the important message from our
data is that the uniform and the vertical stripe state are still
strongly competing at considerably lower variational ener-
gies than in previous studies for large 2D systems [52].
Thus, it seems likely that both states play an important role
for the low-energy physics of the t-J model, and that small
perturbations (e.g., disorder, open boundaries [62], etc.) in
the system can be enough to stabilize different states.
However, our data shows that diagonal stripes are ener-
getically higher than vertical stripes. (We have not found
evidence for the stable diagonal stripes observed in experi-
ments [19,63] in the low doping limit in the present model.)
Remarks on phase separation.—While it is well established

that the t-Jmodel undergoes phase separation for largeJ=t and
small doping [64–69], some previous studies predicted phase
separation to occur also in the physically relevant regime
J=t ∼ 0.4 (see, e.g., [48,70]). In our study, we do not find
evidence for phase separation, at least not in the doping regime
δ≳ 0.08 (see the SupplementalMaterial [40] for a discussion).
Other values of J=t.—It is conceivable that the close

competition between the uniform and the vertical stripe state
may be a specific feature for J=t ¼ 0.4. This motivated us to
do a similar study for other values of J=t also to check
whether we can detect a clear phase transition between the
two states as a function of J=t. However, for small values
J=t ¼ 0.2 as well as for large values J=t ¼ 0.8, we find a
qualitatively similar dependence on D as in the J=t ¼ 0.4
case; i.e., the uniform state is higher than the stripe state, but
they become closer and closer with increasing D. Thus, the
strong competition between the two states can be found for a
wide range of J=t. We also computed the pairing amplitude
as a function of J=t, shown in Fig. 3(a) for δ ¼ 0.14, which
increases with J=t for both states, with almost a linear
dependence for the uniform state.
A rather unexpected finding concerns the optimal stripe

filling, i.e., the filling at which the energy per hole has a
minimum for a stripe of a fixed width. Several previous
studies predicted that the minimum is at ρl ¼ 0.5 holes per
unit length (i.e., half-filled stripes) [8,9,16,37,71], which is in
close agreementwithour results for J=t ¼ 0.4.However, here
we find that this is only true for J=t ∼ 0.4, and that the optimal
stripe filling actually depends continuously on J=t; i.e., it is a
function of the physical parameters of the system. Figure 3(b)
shows that, for J=t ¼ 0.2, the optimal ρl is≈0.35, i.e., smaller
than half filling, whereas for J=t ¼ 0.8 the minimum energy
per hole is found for a fully doped stripe (ρl ¼ 1).
Nematic case.—Motivated by the fourfold rotational

lattice symmetry breaking in each CuO2 layer in the
LTT phase of La2−xBaxCuO4 and related compounds
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around x ¼ 1=8 we study the effect of a nematic anisotropy
in the t-J model. In Fig. 4(a), we show the results for tx ¼
0.85ty and Jx ¼ ð0.85Þ2Jy with Jy=ty ¼ 0.4, at a doping
δ ¼ 0.1. Comparing this with the isotropic case, the vertical
W5 stripe state has lowered its energy with respect to the
uniform state, which shows that nematicity helps to
stabilize the stripe state, in agreement with previous
findings [72–74]. We also find that the optimal stripe
filling is shifted toward smaller doping, around ρl ≈ 0.4;
see the Supplemental Material [40].
At low doping, the preferred orientation of the stripe is

along the direction with stronger couplings, i.e., the y
direction, in this case, as found in Refs. [73–75] (and in
Ref. [72] for nonsuperconducting stripes). However, we
find that at large doping (δ≳ 0.14) it is the opposite
orientation which is preferred, i.e., horizontal stripes.
This can be understood by looking at the energy contri-
butions in the two spacial directions in the isotropic case
(see the Supplemental Material [40] for the individual
energy contributions): For a vertical stripe around half
filling, the exchange term EJ is dominant over the kinetic
term Ekin, and it is stronger (lower) in the y than in the x
direction, Ekin

y < Ekin
x . Thus, in the nematic case, the stripe

can minimize its energy by orienting itself parallel to the
direction with stronger couplings. However, for large δ it is
the transverse kinetic energy Ekin

x which is dominant, since
with increasing doping, EJ becomes weaker. Furthermore,

EJ
x < EJ

y at large doping, so that for the total energy we find
Etot
x < Etot

y . Thus, in the nematic case at large doping it is
favorable for the stripe to form perpendicular to the
direction with stronger couplings. (A similar conclusion
for fully doped stripes has been reached in Ref. [72].)
Finally, we study the effect of the nematicity on the

pairing amplitude, shown in Fig. 4(b). For both the uniform
and the stripe state we find that the pairing amplitude is
suppressed with increasing nematicity; i.e., the maximal
pairing is obtained in the isotropic case.
Conclusion.—Even with a substantially higher accuracy

than in previous studies, and in the limit of an infinite system
where boundary and finite size effects are negligible, we still
find an extremely close competition between the uniform
and the vertical stripe state. The origin of this near
degeneracy remains a crucial open question and requires
further theoretical investigation. One possibility is that the
nearest-neighbor t-J model is at or close to a phase transition
which separates the two states; i.e., small additional terms in
the Hamiltonian can be enough to stabilize one of the states.
These additional terms depend on the particular cuprate
compound, and we believe that studying the effect of these
terms will explain why stripes appear in certain materials
whereas other compounds show no signs of stripes. For
example, here we confirmed that a nematic anisotropy,
which can be found in the LTT phase of La2−xBaxCuO4,
favors the stripe state over the uniform state.
We have studied the properties of the competing states

individually: the uniform state has d-wave order coexisting
with antiferromagnetic order for δ≲ 0.1. The pairing
amplitude increases with J=t approximately linearly and
gets suppressed with increasing nematicity. The vertical
stripe state is site-centered and has a finite modulation
amplitude of the spin and charge order. Stripes with
antiphase order have a similar or only slightly higher
energy than stripes with in-phase order. In the presence
of a nematic anisotropy, the stripe orientation depends on
the doping. Finally, we have shown that the optimal stripe
filling is not necessarily ρl ¼ 0.5, but depends on J=t.
Therefore, a theory of the physics of stripes should include
the optimal stripe filling as a free parameter.
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