
Dirac and Weyl Superconductors in Three Dimensions

Shengyuan A. Yang,1 Hui Pan,2 and Fan Zhang3,4,5,*
1Engineering Product Development, Singapore University of Technology and Design, Singapore 138682, Singapore

2Department of Physics, Beihang University, Beijing 100191, China
3Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA

4Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
5Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

(Received 13 March 2014; published 21 July 2014)

We introduce the concept of three-dimensional Dirac (Weyl) superconductors (SC), which have
protected bulk fourfold (twofold) nodal points and surface Majorana arcs at zero energy. We provide a
sufficient criterion for realizing them in centrosymmetric SCs with odd-parity pairing and mirror symmetry.
Pairs of Dirac nodes appear in a mirror-invariant plane when the mirror winding number is nontrivial.
Breaking mirror symmetry may gap Dirac nodes producing a topological SC. Each Dirac node evolves to a
nodal ring when inversion-gauge symmetry is broken, whereas it splits into a pair of Weyl nodes when, and
only when, time-reversal symmetry is broken.
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Topological states of matter have attracted significant
attention since the discovery of topological insulators [1].
The idea of topological classification was soon generalized to
superconductors (SC) which have energy gaps for quasipar-
ticles [2]. Interestingly, topological phases also exist for
systems without energy gaps. Graphene and its ABC stacked
cousins are examples of two-dimensional (2D) semimetals
[3,4], in which their Fermi surfaces consist of isolated points
that are protected by the chiral (sublattice) symmetries. Indeed,
the constant energy surfaces of these graphene few-layers have
winding numbers set by the number of layers. Recently, the
topological semimetal concept has been extended to three
dimensions (3D). Unlike the critical point between 3D trivial
and topological insulators with inversion symmetry, the four-
folddegenerateFermipoints in3DDiracsemimetals [5–12]are
protected by crystalline symmetries. When an essential sym-
metry is broken, a Dirac semimetal, both in 2D and 3D, may
become a topological or a trivial insulator. Moreover, a Dirac
point may split into Weyl points when inversion or time-
reversal symmetry (TRS) is broken, and the Dirac semimetal
becomesaWeylsemimetal.Apairof3DWeylpoints [13–19] is
protectedbyChernnumbers�1of theconstantenergysurfaces
enclosing either Weyl node, leading to a surface Fermi arc. In
contrast, a 3DDirac semimetal may or may not have a surface
Fermiarc.Nevertheless, it isgenerallynotaneasytasktopinthe
Fermi energy exactly at the nodal points in semimetals.
Nodal phases are common for unconventional SCs.

One may naturally wonder whether there also exist
Dirac SCs in 3D. Remarkably enough, in this Letter, we
discover a sufficient criterion for their realization. We will
discuss the topological protection of Dirac nodes in 3D SCs
and their surface consequences under various symmetry
breaking scenarios. The latter provides an alternative to the
realization of 3D Weyl SCs [20–25].

In the Bogliubov–de Gennes (BdG) description of SCs,
the particle-hole redundancy leads to a natrual half-filling
and an intrinsic particle-hole symmetry (PHS). Compared
to the cases of semimetals, the former feature simplifies our
task to focus on the nodal points at zero energy, whereas
the latter feature poses an additional symmetry constraint
which plays intriguing roles in stabilizing the nodes.
Specifically, we find that a 3D Dirac SC can be realized
in a nodal phase of a centrosymmetric SC with odd-parity
pairing and mirror symmetry. Pairs of Dirac nodes would
appear in a mirror-invariant plane when the mirror winding
number [26,27] is nontrivial. Each Dirac node is protected
locally by the combination of mirror symmetry, TRS, and
an inversion-gauge symmetry which we will introduce in a
short while.
Breaking any symmetry destroys the Dirac nodes:

(i) breaking mirror symmetry may fully gap the nodes
producing a topological SC; (ii) breaking inversion-gauge
symmetry extends each Dirac node to a robust nodal ring;
(iii) a Dirac node may split into a pair of Weyl nodes when
and only when TRS is broken. These evolutions of bulk
Dirac nodes and the corresponding deformations of surface
Majorana arcs are summarized in Fig. 2. Our physics might
be realized in the nodal phase of CuxBi2Se3, which at least
serves as a concrete example to illustrate the essential
physics we will present.
Our analysis starts from the Fu-Berg BdG mean-field

model [28] describing the SC states of CuxBi2Se3:

H ¼ ½vðk × sÞ · ẑσz þ vzkzσy þmσx − μ�τz þ Δτx; ð1Þ

where the Pauli matrices σ, s, and τ act on the orbital, spin,
and Nambu spaces, respectively. For each orbital we have
chosen the basis as ðck↑; ck↓; c†−k↓;−c†−k↑ÞT . The τz-term
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describes the normal state near Γ point, with its form
determined [29,30] by the inversion (P ¼ σx) symmetry,
the mirror (M ¼ −isx) symmetry, i.e.,

MHðkx; ky; kzÞM−1 ¼ Hð−kx; ky; kzÞ; ð2Þ

and the C3ðẑÞ symmetry of the CuxBi2Se3 crystal. ẑ is the
quintuple-layer normal, m is the normal state band gap,
and μ is the chemical potential. The pairing term Δ can be
classified [28] according to the representations of the
crystal point group D3d. The existence of mirror symmetry
requires [26] the winding number to vanish for any fully
gapped 3D SC with TRS. Indeed Fu and Berg have shown
[28] that the topological state (Δ ∼ σysz) breaks the mirror
symmetry whereas the states respecting the symmetry are
either trivial (Δ ∼ I or σx) or nodal. Our focus will be on the
nodal phase with Δ ∼ σysx.
Under inversion the normal state has even parity whereas

the pairing σysxτx has odd parity, yet the Hamiltonian (1)
still has an inversion-gauge symmetry, i.e.,

τzPHðkÞP−1τz ¼ Hð−kÞ: ð3Þ

We observe that in the mirror invariant plane with kx ¼ 0,
the nodal points are located away from the time-reversal
and mirror invariant line ky ¼ 0. Indeed, along this special
line, the BdG Hamiltonian (1) reduces to

H ¼ ðvzkzσy þmσx − μÞτz þ Δσysxτx; ð4Þ

the spectrum of which is fully gapped as long as the pair
potential Δ is nonzero. It is easy to verify that Eq. (4) is
adiabatically connected to the case for m ¼ μ ¼ 0 (by first
letting m → 0 then μ → 0) described by

H̄ ¼ vzkzσyτz þ Δσysxτx; ð5Þ

where both σy and sx are good quantum numbers with
eigenvalues �1. Now consider the interface between a 1D
system described by Eq. (5) and the vacuum. The trivial
vacuum is adiabatically connected to a pure s-wave SC and
thus can be modeled by vzkzσyτz þ Δsτx, with Δs → ∞
and Δs · Δ > 0 [29,31]. One recognizes that out of the
four boundary problems with σy ¼ �1 and sx ¼ �1, there
are two copies of Jackiw-Rebbi problem [32]: i.e., one
with σy ¼ −1 and sx ¼ 1 and the other with σy ¼ 1 and
sx ¼ −1. Each Jackiw-Rebbi problem has a zero-energy
bound state localized at the surface [29]. Due to the TRS
and PHS, these two zero modes form a Majorana Kramers
pair [31] at the top surface Brillouin zone (BZ) center, as
sketched in Fig. 1(a). Moreover, across the center there
exists a Majorana Kramers arc connecting the two surface
projected nodal points.
To visualize the Dirac nodes and their surface conse-

quences more clearly, we numerically calculate the energy
spectrum for a (001) slab terminated by vacuum, using
a layered hexagonal lattice model [34]. As shown in
Figs. 1(b)–1(e), the two surface projected nodal points
are located in the kx ¼ 0 line with finite ky values; there is a
flat surface arc connecting the projected nodal points; the
arc is doubly degenerate and hosts a Majorana Kramers pair
at its center. (We note by passing that for another nodal
phase with Δ ∼ σz (Δ ∼ σysy) in Ref. [28], two Dirac nodes
appear in the kx ¼ 0 (ky ¼ 0) mirror invariant plane and
align in the kz (kx) axis. Similar surface consequences also
apply to these two phases.)
Remarkably, the presence and the flatness of Majorana

Kramers arc in Fig. 1 are not accidental and indeed protected
by the mirror symmetry and TRS, as we explain now.
Consider the mirror invariant plane (kx ¼ 0) with a pair of
nodal points at ky ¼ �kn. In this plane, two mirror sub-
spaces (sx ¼ �) decouple and are related by TRS and PHS.
Both TRS and PHS are broken in each mirror subspace, yet
the chiral symmetry, i.e., the product of TRS and PHS, is still

FIG. 1 (color online). Features of a 3D
Dirac SC. (a) Two Dirac nodes (black
dots) located in the (shaded)mirror invari-
ant plane. The nontrivial mirror winding
number of the kx ¼ ky ¼ 0 (pink) line
protects the nodes and dictates the pres-
ence of a Majorana arc (blue line) with a
Majorana Kramers pair (red dot) on the
(001) surface. (b) Linear energy disper-
sions around one Dirac node from our
tight binding calculations [33]; each band
is doubly degenerate because of TRS and
inversion-gauge symmetry. (c)–(e) Band
structures of a (001) slab. The blue color in
(c) corresponds to zero energy. (f) Band
structures of a (010) slab. (g) Surface
density of states for (001) and (010)
surfaces.
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respected. For any fully gapped loop l in this plane, the
presence of chiral symmetry allows the definitions of total
and mirror winding numbers [26] as follows:

γt;m ¼ 1

2π

I
l
ðAkþ �Ak−Þ · dk; ð6Þ

where Ak� is the Berry connection of the negative energy
bands in the sx ¼ � mirror subspace. Explicit calculations
show that γm ¼ 1 [35] and γt ¼ 0 for Eq. (4), which dictates
the presence of a Majorana Kramers pair [31] at the surface
BZ center. In the kx ¼ 0 plane, the states in ky ¼ a loops
with jaj < kn and with jaj > kn are adiabatically connected
to the state of Eq. (4) and to the vacuum state [36],
respectively. Hence in the former case γm ¼ 1 whereas in
the latter case γm ¼ 0. Equivalently, γm ¼ 1ð−1Þ for any
loop enclosing the ky ¼ knð−knÞ nodal point whereas γm ¼
0 for any loop enclosing both or neither nodal points. The
nontrivial γm has two important consequences.
First, the nodal points must exist in the mirror invariant

plane. Suppose that there is no nodal point in the plane,
then the presence of chiral symmetry requires that both the
total and the mirror Berry curvatures must vanish [26],
leading to a contradicting result γmð0Þ ¼ γmðπÞ via Stokes’
theorem. Therefore, the derived difference in γm implies
the presence of a pair of nodal points in the plane. Out
of the plane, the absence of mirror invariance implies gap
opening. Figure 1(b) shows that the quasiparticle energy
dispersion is linear in all directions near the bulk nodal
point. Furthermore, each band must be doubly degenerate
because of the presence of both TRS and inversion-gauge
symmetry. Therefore, the nodes are Dirac nodes.
Secondly, γm ¼ 1 amounts to a Berry phase �π in the

decoupled mirror subspace with sx ¼ �. This implies a
protected surface state at ðkx ¼ 0; kyÞ for any jkyj < �kn in
any surface that preserves the mirror symmetry. Moreover,
the presence of chiral symmetry in each mirror subspace
pins the surface state to zero energy. Therefore, the
Majorana arc must be dispersionless and spin degenerate.
From the above discussions, evidently, the combination

of TRS, mirror symmetry, and inversion-gauge symmetry
provides the protection of the Dirac nodes. When any of
these symmetries is broken, the Dirac nodes become
unstable. To facilitate the understanding of the consequence
of symmetry breaking, we construct a local effective model
near a Dirac node from general symmetry analysis. Since a
Dirac node lies in a mirror invariant plane, the effective
model must have the following local symmetries which
commute with each other: chiral symmetry Π, mirror
symmetryM, and the product of TRS and inversion-gauge
symmetry W. For a Dirac node, the low-energy subspace
has a dimension of four. We choose the representations of
symmetry operations as follows: Π ¼ τy, M ¼ −isx, and
W ¼ syτzK with K the complex conjugation. Note that the
Pauli matrices τ and s here have different meaning from

those in the original eight-band model (1). Under these
symmetry constraints, the effective Hamiltonian takes the
generic form of

HD ¼ kxsyτx − kysxτx þ kzτz: ð7Þ

When the mirror symmetry is broken, the Dirac node
loses its protection and thus may be gapped out. For
example, a mirror symmetry breaking perturbation δszτx

FIG. 2 (color online). Consequences of symmetry breaking for
a Dirac SC. (a) When the inversion-gauge symmetry or TRS is
broken, a Dirac node evolves into a nodal ring or two Weyl nodes
normal to the mirror invariant plane, respectively. (b)–(d) A Dirac
node (nodal ring) protected by the mirror (total) winding number
�1 of the surrounding loop (red); a Weyl node protected by
the Chern number �1 of the surrounding sphere (light green).
(e)–(g) Sketches of the surface zero-energy states for each case.
(e) Majorana Kramers arc (light blue) connecting the two surface
projected Dirac nodes. (f) Two surface projected nodal rings with
an extended area of zero-energy states inside. (g) A surface arc
connecting a pair of surface projected Weyl nodes. (h)–(k) Tight
binding calculations [33] for a (001) slab. (h) and (i) correspond
to the scenarios in (f) and (g), respectively. (j) and (k) show that a
Dirac SC may become a fully gapped topological SC when the
mirror symmetry is broken. The blue color corresponds to the
zero energy. We have chosen σzτz to break the inversion-gauge
symmetry, σxsx to break TRS, and σyszτx to break the mirror
symmetry, respectively.
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in (7) leads to doubly-degenerate gapped Dirac bands
with dispersion ε ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ δ2

p
. However, the Majorana

Kramers pair is even robust against mirror symmetry
breaking, as long as the perturbation does not close the
gap along the time-reversal and mirror invariant line with
nontrivial γm. This is because the parity of total γm
determines [26] the Z2 index of a SC with TRS, and in
the current example odd γm makes the Z2 index nontrivial.
Therefore, breaking the mirror symmetry may gap the
Dirac nodes producing a topological SC [26,28,37] for
which the Majorana arc becomes the helical Majorana
surface state, as seen in Figs. 2(j)–2(k).
When the inversion-gauge symmetry is broken, the nodal

point is not required to be fourfold degenerate. Thus, the
Dirac node splits into two doubly degenerate nodes in the
mirror invariant plane, one in each mirror subspace. In this
plane, γt and γm are �1 for any loop only enclosing one
doubly degenerate node. Off this plane, even though γm can
no longer be defined, γt is still well defined for any fully
gapped loop since the chiral symmetry is unbroken.
Evidently, the pair of nodes in the plane can extend off
the plane and form a nodal ring, which has to be normal to
the plane as required by TRS and mirror symmetry, as
sketched in Fig. 2(c). For example, such a symmetry
breaking term δτx in (7) leads to a spectrum

ε2 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
� δÞ2 þ k2z , which contains a nodal ring

normal to the mirror invariant plane. As a consequence at
the surface respecting the mirror symmetry, the projected
nodal ring has an extended area of zero energy modes
inside [38–41] and there is a dispersionless and spin
degenerate surface arc connecting the pair of rings, as
shown in Figs. 2(f)–2(h).
A Dirac node may split into a pair of Weyl nodes only

when TRS is broken. In the presence of chiral symmetry,
any Chern number must be zero [26,42] and thus an
isolatedWeyl node cannot be protected. Indeed, the product
of TRS and PHS is a chiral symmetry. Since PHS is
intrinsic for any 3D SC, a Weyl node can only be protected
when TRS is broken. As an example, a symmetry breaking
term δsxτy in (7) splits the Dirac node into two Weyl

nodes with energy dispersion ε ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkx � δÞ2 þ k2y þ k2z

q
.

When the mirror symmetry is unbroken, no node can be
protected in the mirror invariant plane due to the absence of
chiral symmetry, and thus the two Weyl nodes move off the
plane normally in opposite directions. Once the pair of
Weyl nodes splits in momentum instead of in energy, the
inversion-gauge symmetry pins them to zero energy. These
results, together with the symmetry breaking perturbations
in the original CuxBi2Se3 model are described in Fig. 2.
All the above features are reminiscent of 2D and 3D

Dirac semimetals [3–12], in which Dirac nodes are pro-
tected by sublattice symmetries and a set of crystalline
constraints, respectively. Analogically, the nodal phase
described by Eqs. (6) and (7) should be entitled “Dirac

SCs in 3D.”When γm changes by N from ky ¼ 0 to π in the
mirror invariant plane, a pair of nodal points with kN

dispersion appears and in general each node splits into N
Dirac nodes. A rotational symmetry may dictate and relate
multiple pairs of Dirac nodes, which can be obtained by
applying Eq. (6) wherever applicable.
The form of surfaceMajorana arcs of a Dirac SC depends

on the surface orientation. For example, in Fig. 1(f) the two
bulk nodes project to the same point in the (010) surface BZ
and the surface Majorana arcs shrink to a point, in sharp
contrast to the case for (001) surface. The surface density of
states [43] thus differs between the two surfaces, as shown in
Fig. 1(g). At those surfaces breaking the mirror symmetry,
the dispersionless surface arc becomes dispersive. Thus, to
identify a nodal phase using surface sensitive probes, it is
necessary to measure multiple surfaces with different
orientations. Besides the appealing surface consequences,
symmetry-protected pseudorelativistic physics occurs near
each Dirac node, and chiral and axial anomalies [44,45]
further arise when the Dirac node splits into a pair of Weyl
nodes. The two anomalies may, respectively, lead to anoma-
lous thermal (spin) Hall effect and anomalous angular
momentum [45], manifesting the TRS breaking.
The 3D Dirac SCs may be realized in the nodal phase of

CuxBi2Se3 [28] or the B phase of UPt3 [46]. The former has
served as a concrete example to illustrate the essential
physics in this Letter, though its precise pairing symmetry
is still under hot debate [28,47–63]. Recently, there is a hint
of the existence of nodal points in the specific heat data
of CuxBi2Se3 at high x values [64]. As suggested by our
theory, different symmetry breaking in different samples
may explain why different groups have observed different
phases of CuxBi2Se3. The search for other candidate
materials goes well beyond the scope here and deserves
a separate study in the near future.

The authors are indebted to Y. Ando, D. L. Deng, L. Fu,
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Note added.—Our criterion also suggests the possible
existence of a third class of 3D Dirac semimetals [12],
where a sublattice symmetry acts as the required chiral
symmetry. The 3D Dirac and Weyl points were also found
to exist in Andreev spectra at Josephson junctions [42]. Our
criterion can also be used to search for Dirac and Weyl
points in 2D systems that are mirror invariant planes.
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