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We consider weakly interacting bosons in a 1D quasiperiodic potential (Aubry-Azbel-Harper model) in
the regime where all single-particle states are localized. We show that the interparticle interaction may lead
to the many-body delocalization and we obtain the finite-temperature phase diagram. Counterintuitively,
in a wide range of parameters the delocalization requires stronger coupling as the temperature increases.
This means that the system of bosons can undergo a transition from a fluid to insulator (glass) state
under heating.
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Quantum mechanics of a single particle in a quasiperi-
odic potential is a standard although quite nontrivial
theoretical problem [1–6] intensively studied for several
decades. It turned out that for one-dimensional (1D)
quasiperiodic potentials (superposition of two incommen-
surate periodic potentials) the eigenfunctions can be either
extended or localized, depending on the parameters of the
potential. The phenomenon of quantum localization was
observed for 1D quantum gases in both random [7] and
quasiperiodic potentials [8]. The experiments conducted
in the regime of negligible interaction between the atoms
of expanding Bose gas demonstrated good qualitative
agreement with the single-particle theories of localization
[3,9]. The same applies to spreading of wave packets of
light in a quasiperiodic photonic lattice [10]. Recently
[11,12], a Feschbach resonance was used to study bosons
with sizable and fine-tunable interaction in the quasiperi-
odic potential.
Theoretical description of many-body effects in disor-

dered fermionic [13,14] and bosonic [15] systems is based
on the idea of the localization of many-body wave
functions in the Hilbert space—many-body localization.
The quasiperiodic potential represents an intermediate case
between periodic and disordered systems. Zero temperature
phase diagram for 1D bosons in the quasiperiodic potential
has been previously discussed and calculated numerically
[16–18], and the case of an infinite temperature for
(nearest-neighbor) interacting spinless fermions has been
studied in Ref. [19]. The problem of localized and extended
states of two interacting particles in the 1D quasiperiodic
potential has been discussed in Refs. [20,21].
In this Letter we study finite-temperature transport proper-

ties of interacting bosons in the 1D quasiperiodic potential
and predict the physical behavior which differs drastically
from the many-body localization of bosons caused by
random potentials. We show that, counterintuitively, in a

broad temperature range an increase in temperature induces a
transition from fluid to glass.
The standard model of a 1D quasiperiodic potential is the

Aubry-Azbel-Harper (AAH) model [1–3]—a tight-binding
Hamiltonian with hopping amplitude J and periodically
modulated on-site energies, at a period incommensurate
with respect to the primary lattice. The eigenstate ψα

j at
energy εα is determined by the equation

Jðψα
jþ1 þ ψα

j−1Þ þ V cosð2πκjÞψα
j ¼ εαψ

α
j : ð1Þ

Here V is the modulation amplitude, and κ is an irrational
number. In 1D random potentials all single-particle states
are localized [22,23]. On the contrary, in the AAH model
all states are extended unless the amplitude of the modu-
lation exceeds a critical value 2J. Then all states are
localized, and the localization length in units of the lattice
constant is given by [3]

ζ ¼ 1

lnðV=2JÞ ⇒ ζ ≃ V
V − 2J

≫ 1 for V − 2J ≪ V: ð2Þ

Below we assume ζ ≫ 1. Our analytical consideration
based on the semiclassical approach [2,5,24,25] to the
single-particle problem, is valid when the period of the
modulation is much larger than the period of the lattice,
κ ≪ 1. We supplement this analysis by numerical calcu-
lations for κ ∼ 1, in particular for κ equal to the golden
ratio ð ffiffiffi

5
p

− 1Þ=2.
The semiclassical one-particle spectrum is organized

according to the continued fraction decomposition [2,5]
of the irrational parameter κ ¼ 1=½n1 þ 1=ðn2 þ…Þ�. For
n1; n2;… ≫ 1 the spectrum has a hierarchical structure: it
consists of n1 narrow first-order bands (FOBs)—clusters of
L=n1 energy levels (L is the size of the system). Each FOB
contains n2 second-order bands, so that there are ∼n1n2
second-order bands in total, etc. All eigenstates are located

PRL 113, 045304 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
25 JULY 2014

0031-9007=14=113(4)=045304(5) 045304-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.045304
http://dx.doi.org/10.1103/PhysRevLett.113.045304
http://dx.doi.org/10.1103/PhysRevLett.113.045304
http://dx.doi.org/10.1103/PhysRevLett.113.045304


in the energy interval −V − 2J < ε < V þ 2J. The spacing
ω between FOBs is the frequency of the classical periodic
motion [26] in a single potential well of the size 1=κ ≈ n1
[27], which includes n1 levels,

ω ¼ 2πH
dx=v

≃ 2π2κV
lnð64V2=jε2 − V2=ζ2jÞ ; ð3Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 − ½ε − V cosð2πκxÞ�2

p
is the classical

velocity of a particle. The widths of FOBs are determined
by the tunneling between neighboring wells [5],

Γs ¼
4ω

π
exp

�
−
Z

dxjpj
�
: ð4Þ

The integral is taken over the classically forbidden region,
and jpj ¼ arccosh½ðV cosð2πκxÞ − εsÞ=2J�. The index s
labels FOBs centered at the energies εs. The action can
be approximated as

R
dxjpj ≈ jεsj=4κJ, which yields an

exponential dependence of the bandwidth on energy

Γs ≈
32κJ
π

expð−jεsj=4κJÞ: ð5Þ

Can the localization of the bosons be destroyed by the
interaction? It is known that the interaction can delocalize
fermions [14] and 1D bosons [15] in the case of a random
potential. Experiments with interacting bosons in 1D
quasiperiodic potentials [11,12] indicated an interaction-
induced localization-delocalization transition. It is also
worth noting that experiments in quasiperiodic photonic
lattices [10] have found that nonlinearity (interactions)
increases the width of localized wave packets of light.
Here we consider the AAH model with a weak on-site
interaction,

Hint ¼
U
2

X
j

a†ja
†
jajaj; U ≪ J; ð6Þ

with aj being the bosonic field operators. In order to
estimate the critical coupling constant Uc corresponding
to the many-body localization-delocalization transition
(MBLDT), we use the method developed in [14,15], which
is similar to the original estimation for the single-particle
Anderson localization [9]. One has to consider the localized
one-particle states jαi and analyze how different two-
particle states jα; βi hybridize due to the interaction. The
criterion of MBLDT is

Pα ∼ 1; ð7Þ

where Pα is the probability that for a given one-particle
state jαi there exist three other states jβi; jγi; jδi, such that
the two-particle states jα; βi and jγ; δi are in resonance; i.e.,
the matrix element hγ; δjHintjα; βi≡Mγδ

αβ exceeds the

energy mismatch Δγδ
αβ ≡ jεα þ εβ − εγ − εδj where εα, εβ,

εγ and εδ are one-particle energies.
For large occupation numbers Nβ, Nγ, and Nδ of the

states jβi, jγi and jδi the fluctuations are small. Selecting a
given single-particle state α and taking into account both
direct and inverse processes we find [28]

Mγδ
αβ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNβð1þNγÞð1þNδÞ−NγNδð1þNβÞj

q
Uγδ

αβ; ð8Þ

with

Uγδ
αβ ¼ U

X
j

ψδ�
j ψγ�

j ψ
β
jψ

α
j : ð9Þ

As discussed in Refs. [14,15], the matrix elements of the
interaction are small unless the energies εα; εβ; εγ; εδ are
almost equal pairwise, e.g., εα ≈ εγ and εβ ≈ εδ, while εα
and εβ can differ substantially. Accordingly,M

γδ
αβ ≈ NβU

γδ
αβ.

The approximation (8) for the matrix elements remains
valid for small occupation numbers.
If α and γ (as well as β and δ) are nearest neighbors in

energy the energy mismatch is

Δγδ
αβ ¼ δα þ δβ; ð10Þ

where δα ¼ jεα − εγj is a typical spacing between the states
on the length scale ζ at energy close to εα. We estimate the
matrix element [29]:

Mγδ
αβ ≈UNβ=ζ: ð11Þ

According to Eqs. (10) and (11) the probability Pγδ
αβ of

having Mγδ
αβ ≳ Δγδ

αβ is

Pγδ
αβ ≈UNβ=ζðδα þ δβÞ: ð12Þ

The probability Pα which enters the criterion (7) of
MBLDT is the sum of Pγδ

αβ over all single-particle states
jβi; jγi; jδi. Since for given α and β the number of relevant
pairs of states jγi; jδi is of order unity, only the summation
over β is important,

Pα ¼
X
β;γ;δ

Pγδ
αβ ≈

X0

β

UNβ=ζðδα þ δβÞ; ð13Þ

where
P0

means that the summation is over the eigenstates
on the length scale of ζ. Substitution of Eq. (13) into Eq. (7)
leads to the criterion of MBLDT:

X0

β

UcNβ=ζðδα þ δβÞ ¼ 1: ð14Þ

The critical coupling strengthUc in Eq. (14) depends on the
choice of the state α through the quantity δα. One has to
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choose α which minimizes Uc. Besides, Eq. (14) expresses
the critical couplingUc in terms of the occupation numbers
Nβ which are determined by the chemical potential. In
order to formulate the MBLDT criterion in terms of the
experimentally controllable filling factor ν one has to
complement Eq. (14) with the number equation, which
relates ν to the occupation numbers:

ν ¼
X
α

Nα=L: ð15Þ

We are now ready to apply the MBLDT criterion to
interacting bosons in the AAH model. On the insulator
side, the occupation numbers are given by

Nα ¼ fexp½ðεα − μþUNα=ζÞ=T� − 1g−1; ð16Þ

where μ is the chemical potential shifted by the interaction
energy of a particle in the state jαiwith particles in all other
states. Equations (14), (15), and (16) yield the critical
coupling Uc as a function of temperature.
On the length scale ζ there are ∼ζ states with a

significant amplitude of the wave function. Thus, there
are at most ζ states contributing to the sum in Eq. (14). The
calculation simplifies in the limit n1 ≪ ζ ≪ n1n2 where
each FOB contains ∼ζ=n1 ≈ κζ overlapping states. The
related example is shown in Fig. 1: κ is close to 1=8, the
localization length is ζ ≃ 40, and n2 ¼ 7.
At temperatures much smaller than the spacing between

the FOBs, i.e., T ≪ ω, only single-particle states from the
lowest energy FOB participate in MBLDT. We assume that
the spacing between the states in this band is approximately
constant and thus equal to δβ ≈ Γ0=κζ. Using the fact that

the sum
P0
β
Nβ=ζ over the states on the length scale ζ in

Eq. (14) is equal to the sum
P

αNα=L in Eq. (15) over all
states we obtain [30]:

νUc ≈ 2Γ0=κζ; T ≪ ω: ð17Þ
At temperatures T ≫ ω many FOBs are occupied and

particles in these bands participate in MBLDT. The bands
are so narrow that all levels in the sth FOB have the same
occupation, so that the corresponding level spacing is
δβ ≈ Γs=κζ. Then, summing over β within each FOB
one can rewrite Eq. (14) as

Xn1−1
s¼0

ζUcNsκ
2=ðΓ0 þ ΓsÞ ≈ 1 ð18Þ

(we selected the state jαi to be in the lowest energy band,
s ¼ 0). According to Eq. (5) the width Γs exponentially
increases with εs (i.e., s) in the interval 0 > εs > ε0≃
−V − 2J, since jεsj decreases. Hence, at T ≪ 8J the sum
over s in Eq. (18) is dominated by s ¼ 0, which leads to

Uc ≈ 2Γ0=N0κ
2ζ: ð19Þ

For εs − μ < T we may use the occupation number
expression [29]

Ns ≈ T=ðεs − μÞ; ð20Þ
and put Ns ≈ 0 for larger εs. In particular N0 ≈ T=ðε0 − μÞ.
With the use of Eq. (20), one can rewrite Eq. (15) as

ν ≈
XðTþμ−ε0Þ=ω

s¼0

κT=ðsωþ ε0 − μÞ: ð21Þ

In the temperature range ω ≪ T ≪ 8J we then find the
chemical potential dependence on temperature [29]

μ ≈ ε0 −
κT
ν

�
1þ T

8νJ
ln

�
T
ω

��
; ð22Þ

and using equation (19) we obtain the critical coupling:

νUc ≈
2Γ0

κζ

�
1þ T

8νJ
ln

�
T
ω

��
: ð23Þ

Since T ≪ 8J, the second term in square brackets is a
small correction. Nevertheless, it is important. According to
Eq. (23) the temperature dependence of the critical cou-
pling is anomalous: Uc increases with T; i.e., an increase in
temperature favors the insulator state.
This behavior originates from the cluster structure of the

spectrum, with exponentially increasing cluster width when
going from the lowest (highest) cluster energy to the middle
of the spectrum. Therefore, at T ≪ 8J (and ζ ≫ n1 ≈ κ−1)

FIG. 1 (color online). The critical coupling strength Uc versus
temperature obtained by directly using Eqs. (14)–(16) and the
one-particle spectrum computed by exact diagonalization, for κ
close to 1=8, V ¼ 2.05J, and the filling factor ν ¼ 1; 2; 4. At
T ¼ 0 we recover universality in νUc0. The dashed line is the
T → ∞ asymptotics. The inset shows the spectrum on the length
scale of ζ (the number of states is ζ ≈ 40).
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the localization-delocalization transition is provided only
by the particle states in the lowest energy cluster. The
fraction of these particles decreases with increasing temper-
ature, thus ensuring an increase in the critical coupling
strength Uc.
For temperatures T → ∞ (T ≫ 8J; 8νJ) all eigenstates

are equally populated and Ns ¼ ν. Then the main con-
tribution to the sum in Eq. (18) comes from s ¼ 0 and
s ¼ n1 − 1 as Γn1−1 ≈ Γ0 ≈ ð32κJ=πÞ expð−1=κÞ. Having
in mind Eq. (17) we thus obtain

νUc∞ ≃ Γ0=κ2ζ ≃ νUc0=2κ ≫ νUc0; ð24Þ

where Uc0 is the zero temperature critical coupling at
ζ ≫ n1 ≈ κ−1. Therefore, under this condition we always
expect the anomalous ”freezing with heating” behavior at
high enough temperatures.
Our analytical results are confirmed by numerics using

the single-particle spectrum obtained by exact diagonaliza-
tion. The results for κ ≈ 1=8 and ζ ≃ 40 are shown in
Fig. 1. The critical coupling turns out to be very small since
it is proportional to the width Γ0, which is several orders of
magnitude smaller than J. This justifies the validity of our
perturbative approach with respect to the interparticle
interaction.
In the opposite limit 1 ≪ ζ ≲ κ−1, the situation changes.

Indeed in this case single-particle states participating in
MBLDT belong to different FOBs (not more that one state
from a given cluster). The characteristic spacing between
these states is ∼8J=ζ and the cluster structure of the
spectrum is not important. The resulting critical coupling
νUc is ∼J. For κ ≪ 1 one can use the quasiclassical
approach with the density of states κ=ωðεÞ and ωðεÞ given
by Eq. (3). The results are consistent with our calculations
based on exact diagonalization for the one-particle spec-
trum and Eqs. (14), (15), and (16). They suggest a slow
decrease of Uc with increasing temperature and are

displayed in the inset of Fig. 2(a) for ζ and κ−1 both close
to 8. However, since our approach is based on the
perturbative treatment of the interactions, its predictions
at νUc ≳ J at least require a large filling factor ν. A detailed
analysis of this question will be given elsewhere.
For κ ∼ 1 the quasiclassical approach is no longer valid

and one has to rely only on the numerics based on exact
diagonalization for the one-particle problem and Eqs. (14),
(15), and (16). The results for κ ¼ 1=ð1þ 1=ð1þ…ÞÞ ¼
ð ffiffiffi

5
p

− 1Þ=2 (golden ratio) and for κ close to 0.24 at ζ ≈ 7

are shown in Fig. 2. For the latter case our results at T ¼ 0

and ν ¼ 1 are consistent with the DMRG calculations of
Refs. [16] and [17] (using κ ¼ 0.77 which is equivalent to
κ ¼ 0.23) extrapolated to V ¼ 2.3J.
Reference [19] presented results of the numerical sim-

ulation for spinless fermions with nearest neighbor inter-
action subject to a quasiperiodic potential at T ¼ ∞. This
problem (different from bosons with the onsite interaction),
can also be attacked with our approach at any temperature.
The results will be published elsewhere, but already
now we can say that at T → ∞, they agree fairly well
with Ref. [19].
Our results at finite temperatures indicate an anomalous

UcðTÞ dependence. The experiment [11] has been per-
formed for κ ≈ 1.24, which according to Eq. (1) is equiv-
alent to κ ¼ 0.24. The extrapolation of experimental results
to V ≈ 2.3J gives νUc=J ∼ 0.3, which is consistent with
our calculations.
In conclusion, we have developed the many-body

localization theory of weakly interacting bosons in a 1D
quasiperiodic potential and obtained the phase diagram in
terms of temperature and interaction. The most unexpected
prediction based on our calculations is the transition from
fluid to insulator (glass) with heating.
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FIG. 2 (color online). The same as in Fig. 1 for V ¼ 2.3J (ζ ≈ 7). In (a) κ ≈ 0.24, and in (b) κ is equal to the golden ratio. The inset in
(a) shows νUcðTÞ for κ ≈ 1=8 and V ¼ 2.25J (ζ ≈ 8).
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