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We propose a simple scheme for tomography of band-insulating states in one- and two-dimensional
optical lattices with two sublattice states. In particular, the scheme maps out the Berry curvature in the
entire Brillouin zone and extracts topological invariants such as the Chern number. The measurement relies
on observing—via time-of-flight imaging—the time evolution of the momentum distribution following a
sudden quench in the band structure. We consider two examples of experimental relevance: the Harper
model with π flux and the Haldane model on a honeycomb lattice. Moreover, we illustrate the performance
of the scheme in the presence of a parabolic trap, noise, and finite measurement resolution.
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Band insulators are a fascinating form of quantum
matter. Their very existence relies on band structure and
quantum statistics and the geometric phase inherent in their
wave function gives rise to intriguing physics: Topological
quantum numbers, such as the Chern index or the Z2

invariant, separate them into classes with fundamentally
different behavior [1,2], some of which support chiral or
helical edge modes [3,4]. Only recently, first evidence of
such topological insulators has been found in solid-state
materials [5–7] and photonic systems [8]. The recent
creation of artificial gauge fields in optical lattices [9–16]
makes it seem likely that topological insulators will be
realized in the near future also in highly tunable systems of
ultracold atoms. However, the experimental characteriza-
tion of apparently structureless band insulators poses a
challenge. So far, there are schemes that are designed to
measure specific topological properties of the system.
For example, Zak’s phase, i.e., the Berry phase acquired
during the adiabatic motion along a path through the
Brillouin zone (BZ), was measured recently from Bloch
oscillations [12]. Also, the location of Dirac cones was
mapped out in a honeycomb lattice using Landau-Zener
transitions [17–19]. Other proposed schemes are designed
to directly measure either the Chern number (from density
profiles [20], wave-packet dynamics [12,21–24], time-of-
flight (TOF) imaging [24–26], or unidirectional TOF
imaging with single-site resolution [27]), or to probe the
presence of chiral edge modes (via transport measurements
[28–31], in particular, using quench-based schemes, or
Bragg scattering [32–35]). A method allowing for a full
tomography of a band insulator has so far only been
proposed for a specific experimental realization of a
topological insulator based on spin-dependent hexagonal
lattices [36].

Here, we propose a simple scheme for the complete
tomography of band-insulting states in one-dimensional
(1D) and two-dimensional (2D) optical lattices that is not
restricted to a specific system. In particular, the scheme
allows for mapping out the Berry curvature as a function of
quasimomentum and for measuring the Chern number. Our
scheme is based on the momentum-resolved monitoring—
via TOF imaging—of the dynamics following an abrupt
quench in the band structure. In the following, we first
introduce the basic protocol underlying our method, and
then discuss two relevant applications: the π-flux Harper
model [37,38], and the Haldane model [39].
Scheme for the tomography of band insulators.—

Consider spin-polarized (i.e., noninteracting) fermions in
a 2D optical lattice. In each elementary cell l, the lattice
shall have two sublattice states s ¼ A;B, located at rls
[see Fig. 1(a), left]. The corresponding tight-binding
Hamiltonian is characterized by matrix elements hl0s0;ls
that obey the translational symmetry of the lattice. The
diagonal terms refer to on-site potentials, hls;ls ≡ vs,
and the off-diagonal matrix elements describe tunneling
between near neighbors. Thanks to the translational
symmetry, the Hamiltonian is diagonal with respect to
quasimomentum k. With respect to the basis states
jksi ∝ P

le
−ik·rls jlsi it is represented by a k-dependent

2 × 2 matrix hs0sðkÞ ¼
P

l;l0hl0s0;lse
−iðrl0s0−rlsÞ·k, which we

decompose as hs0sðkÞ≡ h0ðkÞδs0s þ hðkÞ · σs0s. Here, σs0s
denotes the vector of Pauli matrices in sublattice space. For
every quasimomentum k, the 2D sublattice space defines a
Bloch sphere, with the north and south pole given by jkAi
and jkBi, respectively. The two eigenstates jk�i lie
at �ĥðkÞ on this Bloch sphere, where ĥðkÞ≡
hðkÞ=jhðkÞj≡ ð sinðϑkÞ cosðφkÞ; sinðϑkÞ sinðφkÞ; cosðϑkÞÞ.
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Their energies ε�ðkÞ ¼ h0ðkÞ � jhðkÞj define the band
structure of the lattice.
We consider the system to be in a band-insulating state

with complete occupation of the single-particle states of
the lower band, jk−i¼ sinðϑk=2ÞjkAi− cosðϑk=2Þeiφk jkBi
[40]. Here, we assume that the gap is much larger than the
temperature, allowing us to neglect thermal excitations,
which would decrease the observed contrast. This band-
insulating state is represented by the map ĥðkÞ from the first
BZ onto the Bloch sphere. The topological properties of
this map determine the properties of the system. Our aim is
to design a feasible measurement scheme that allows for a
reconstruction of ĥðkÞ.
The momentum (not quasimomentum) distribution

of the band insulator, which is obtained from TOF
images taken after suddenly switching off the lattice
potential, is given by nðkÞ ¼ fðkÞjhk− jkAiþ hk− jkBij2 ¼
fðkÞ½1− sinðϑkÞcosðφkÞ�. Here, fðkÞ is a broad envelope
function given by the momentum distribution of the
Wannier function; the expression in square brackets pos-
sesses the periodicity of the reciprocal lattice. Unfor-
tunately, nðkÞ does not provide sufficient information to
reconstruct ĥðkÞ or, equivalently, both ϑk and φk. In order
to obtain the missing information, at the measurement time
tm the system shall be subjected to an abrupt quench
hl0s0;ls → h0l0s0;ls, such that a potential offset v

0
A − v0B ≡ ℏω

between the A and B sites is created and tunneling
suppressed [see Fig. 1(a), right]. In quasimomentum

representation, the Hamiltonian is now characterized by
a constant vector h0ðkÞ ≈ ðℏω=2Þez generating a rotation
around the z axis of the Bloch sphere with frequency ω.
Starting from the band-insulating state, this dynamics is,
thus, captured simply by replacing φk → φk þ ωðt − tmÞ.
This leads to an observable dynamics in the momentum
distribution

nðk; tÞ ¼ fðkÞf1 − sinðϑkÞ cos½φk þ ωðt − tmÞ�g; ð1Þ

whose oscillatory time dependence directly reveals both φk
and sinðϑkÞ ¼ 1 − jĥzðkÞj2. The time dependence of nðk; tÞ
allows us to reconstruct ĥxðkÞ, ĥyðkÞ, as well as jĥzðkÞj
from the amplitude and the phase of the oscillations. It is
sufficient to consider data for k from the first BZ; the
Wannier envelope fðkÞ does not spoil the measurement as it
just gives an irrelevant overall prefactor for each value of k.
For a full tomography, it remains to reveal the sign of ĥzðkÞ.
Since the overall sign is not important, one has to determine
those lines where ĥzðkÞ changes sign. These lines can
be clearly identified by a characteristic cusplike behavior of
jĥzðkÞj, jĥzðkÞj ∝ jk − ksign changej, which sharply contrasts

with the smooth variation of ĥzðkÞ as it results from
tunneling between near neighbors.
Moreover, hzðkÞ, including its sign, can also be mea-

sured via band mapping: After abruptly switching on a
strong potential offset lifting B with respect to A sites as
before, the lattice is switched off without waiting time at a
slow rate such that quasimomentum is mapped onto
momentum. Absorption images after TOF reveal then a
momentum distribution where the A (B) population,
corresponding to the lowest (first excited) band, is mapped
onto the first (second) BZ.
Edge states in the Harper model with π flux.— Once

ĥðkÞ is reconstructed, one can infer whether the system
supports edge modes or not, by invoking the bulk-boundary
correspondence. According to the procedure derived in
Ref. [41], for that purpose one has to identify a closed path
kðλÞ in k space such that ĥðkðλÞÞ lies in a plane E that
contains the origin (i.e., it lies on a great circle of the Bloch
sphere). If the unit vector ĥ describes a closed circle around
the origin when moving along the path, the system does
possess zero-energy edge modes; if not, it does not.
Motivated by recent experiments [15,16], let us consider

the example of a square lattice with nearest-neighbor
tunneling and with a flux of π (half a flux quantum) per
plaquette, which can be generated via laser-assisted tun-
neling or lattice shaking [42]. We consider a gauge where
the tunneling matrix elements in the y direction alternate
between −J andþJ when moving through the lattice in the
x direction, giving two inequivalent sublattices s ¼ A; B.
Additionally, we assume different on-site energies vA ¼
Δ=2 and vB ¼ −Δ=2, and that the tunneling matrix element
in the x direction alternates between −J0 and −J [Fig. 1(a)];
both can be achieved by a superlattice in the x direction.

(a)

(b)

FIG. 1 (color online). General procedure. (a) A lattice with two
sublattice states is quenched abruptly such that both sublattices
are energetically separated by ℏω ¼ vA − vB and tunneling is
suppressed (drawn example: a square lattice with alternating
tunneling matrix elements J and J0). (b) Initially, the system is a
band insulator with the lower band occupied completely. At every
quasimomentum k, the two-dimensional state space is repre-
sented by a Bloch sphere, with the state of the lower band lying at
−ĥðkÞ. With the quench, two flat bands are created, onto which
the state is projected. The resulting dynamics corresponds to a
rotation around the z axis of the Bloch sphere with the same
frequency ω for every k. Monitoring this dynamics in momentum
space allows for reconstruction of the initial position on the
Bloch sphere, giving a complete tomography of the initial band-
insulating state.
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The extent of the first BZ is given by π (2π) in the kx (ky)
direction. The quasimomentum-space Hamiltonian of this
model is characterized by

hðkÞ ¼ ð − J − J0 cosð2kxÞ; J0 sinð2kxÞ;−2J cosðkyÞ þ ΔÞ:
ð2Þ

The two parameters Δ=J and J0=J allow us to explore
various situations with qualitatively different band struc-
tures. Most notably, for J ¼ J0 and Δ < 2J, one finds two
Dirac cones lying at kx ¼ �π=2 and ky ¼ arccosðΔ=2JÞ.
For imbalanced tunneling matrix elements J0 ≠ J, a band
gap opens at the Dirac points and edge states appear if
J0 > J. We focus here on the case Δ ¼ 0 (for Δ ≠ 0 see
[43]). In this case, by choosing k0y ¼ π=2 (ĥz ¼ 0), we can
confine ĥk0yðkxÞ to a plane that contains the origin of ĥ’s
Bloch sphere, a necessary condition for observing edge
modes at zero energy [41]. Edge states (in the equivalent
system with open boundary conditions in the x direction)
do appear if the origin is encircled by ĥk0yðkxÞ [41].
In an experiment, we wish to reconstruct ĥk0yðkxÞ from

the dynamics following a sublattice quench in order to
conclude whether the system possesses edge states or not.
A typical result will look like the upper row of Fig. 2, where
we plot nðk; tÞ at k0y ¼ π=2,Δ ¼ 0, and four values of J0=J.
In order to illustrate the robustness of our method, we have
contaminated nðk; tÞ with normal-distributed uncorrelated
noise, with a standard deviation of 10% of the average
signal. Furthermore, we assumed a mediocre experimental
resolution of 21 points in the first BZ along kx and 41 points
in time. We can reconstruct ĥk0yðkxÞ from nðkx; k0y; tÞ simply
by identifying φðkÞ with the position of the first maximum

in time and sinðϑkÞ ¼ 1 − jĥzðkÞj2 with the difference
between maximum and minimum. The resulting graphs
ĥk0yðkxÞ ¼ ðĥx; ĥy; 0Þ, plotted in the lower row of Fig. 2,
clearly reveal the presence or absence of edge states: Edge
states, expected for the two plots on the left where J0 > J,
are clearly indicated by data points describing a circle
around the origin. Qualitatively, one can see this informa-
tion already in the time evolution of nðkx; k0y; tÞ in the upper
row: If the band insulator supports edge states, the
maximum winds around the time period.
Our scheme also permits us to monitor the topological

transition of the model happening when Δ exceeds 2J,
where for J0 ¼ J both Dirac cones merge (see [43], where
edge modes for open boundary conditions are dis-
cussed also).
Measuring Berry curvature and Chern number in a

Haldane-like system.— Edge currents are topologically
protected only if the associated integer Chern number,
given by the integral of the Berry curvature over the whole
BZ, is finite. In the above example, this is not the case,
since the edge modes always appear in counterpropagating
pairs located at the two Dirac cones. We now turn to a
lattice model where a finite Chern number can be found and
demonstrate how our scheme can be used to map out the
Berry curvature in quasimomentum.
The Berry curvature of the lower band is given by

Ω−ðkÞ ¼
1

2
ð∂kx ĥ × ∂ky ĥÞ · ĥ; ð3Þ

and is readily obtained from ĥðkÞ. It describes the polar-
izability [44] and the anomalous Hall conductivity [45] also
at lower filling. The Chern number reads

w− ¼ 1

2π

Z
d2kΩ−ðkÞ: ð4Þ

It counts how often ĥðkÞ wraps around the Bloch sphere
when k covers the full first BZ. It is proportional to the Hall
conductivity of the completely filled band and indicates the
presence of robust chiral edge modes [3].
Let us consider the Haldane-like model sketched in

Fig. 3(a) with the lower band completely filled. The atoms
live on a honeycomb lattice [17,46] with real tunneling
matrix elements J between nearest neighbors (NNs) and
complex tunneling matrix elements J0eiθ with Peierls phase
θ between next-nearest neighbors (NNNs). The model can
be realized, e.g., in a shaken optical lattice [47]. For J0 ¼ 0,
the vector hðkÞ lies in the xy plane and the band structure
possesses two Dirac points where hðkÞ ¼ 0. For finite
NNN tunneling, J0 > 0, ĥzðkÞ acquires a finite value and a
direct band gap opens at the Dirac cones (though one still
has an indirect band touching). While for J0 ¼ 0 the unit
vector ĥðkÞ was confined to the equator, when approaching
the Dirac points it will now visit either the north or the
south pole, depending on the sign of ĥzðkÞ. The unit vector

FIG. 2 (color online). (a)–(d) Time-resolved TOF images for
the π-flux Harper model (Δ ¼ 0 and k0y ¼ π=2). To mimic
a realistic experiment, we added normal-distributed noise with
a standard deviation of 0.1 of the average signal and assumed a
limited resolution of 21 points along kx and 41 time points.
(e)–(f) If edge states are supported, the temporal maximum as a
function of quasimomentum winds around the time period once
[panels (a),(b)], and ĥk0yðkxÞ ¼ ðĥx; ĥy; 0Þ describes a unit circle
around the origin (e),(f), contrary to when no edge state is
supported (c),(d) and (g),(h), respectively). Red line: exact case.
Bullets: values extracted from the noisy, resolution-limited data
of the upper row, using Eq. (1) [kx from 0 (light) to π (dark)].
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ĥðkÞ can only wrap around the Bloch sphere as required for
a finite Chern number if ĥzðkÞ has opposite sign at the two
Dirac points such that it visits both poles. We find that,
while for jθj < θc the system is a trivial band insulator, it
becomes a topological Chern insulator, characterized by a
Chern number jw−j ¼ 1, once jθj > θc ≈ 0.18π.
As exemplified in Fig. 3(b) for an initial state in the

topological phase (θ ¼ π=2), nðk; tÞ changes its pattern
strongly as a function of time. From this dynamics we
can extract the position of ĥðkÞ on the Bloch sphere
[Figs. 3(c)–3(e)]. The sign change of ĥz for θ=π > 0.18
[Fig. 3(e)] between the two Dirac cones identifies a finite
Chern number jw−j ¼ 1. Although within our scheme one
can directly measure only the absolute value jĥzj, the
sign change in ĥzðkÞ can clearly be identified from the
pronounced kink where jĥzj touches zero, either between
the two Dirac cones, indicating the topological phase
[Fig. 3(e)], or elsewhere, as in the trivial phase [Fig. 3(d)].
The fact that the sign change of hzðkÞ can occur between
the Dirac cones, where the band gap is largest, allows us to
indirectly identify a topological band structure even if the
system is not in a perfect band-insulating state. Namely,
thermal excitations or small deviations from unit filling are

relevant mainly near the Dirac cones, and not where the
sign change occurs.
In a realistic situation, the resolution of nðk; tÞ will

be restricted. Approximating the Chern number (4) by a
sum over differences is unreliable close to the topological
transition (see [43]). Much better results are obtained by
the gauge-invariant description in terms of effective field
strengths developed by Fukui, Hatsugai, and Suzuki [48].
In the Supplemental Material [43], we show how their
formula can be expressed in terms of ĥ. Since this method
enforces an integer result, it gives the exact answer already
for very small numbers of reciprocal lattice points. We
demonstrate this in Fig. 3(f), where we use for nðkÞ only
4 × 4 coarse-grained pixels in the first BZ and take only
10 time steps. We again obtain sin ϑk from the maximal
amplitude of the data points and φk from the position of the
maximum (for such a low resolution, the sign of hz can be
obtained from band mapping). Remarkably, even for this
extremely resolution-limited situation, the Chern number
can be reproduced accurately.
A natural question concerns the role of the trapping

potential. As shown in [43], a harmonic trap modifies the
measured momentum distribution (1) roughly by a pre-
factor ðμ0 − ϵ−ðkÞ=μ0 − ϵminÞ2sinc2ð½μ0 − ϵ−ðkÞ�t=2Þ, with
Fermi energy μ0 and band minimum ϵmin. The first term
describes the reduced contrast of modes with high energy,
since these are only populated in the central region of the
trap, and the second term captures dephasing during the
postquench time evolution, caused by the spatially varying
potential energy. For realistic parameters, both effects
are small, and the proposed scheme works reliably even
in the presence of a trap [43] (cf. the lower panels of Fig. 3).
A newer generation of experiments may enable avoiding a
spatially varying trapping potential altogether [49].
Discussion, conclusion, and outlook.— The robust and

simple method for the tomography of band insulators
described here is not restricted to the two discussed
examples. It can be applied to any 1D or 2D band insulator
with two states per elementary lattice cell—interesting
examples include the Su-Schrieffer-Heeger [50] or Rice-
Mele model [51], which was recently realized in an optical
lattice [12]. Here, an interesting application would be to
measure a topological charge pump [52] to extract the Chern
number quantizing the transport of matter. Moreover, the
method can also be employed to measure systems with only
a partially filled lowest band, and it provides a means to
validate Hamiltonians synthesized for the purpose of quan-
tum simulation. As an outlook, it will be interesting to
generalize the scheme to lattices with more than two
sublattice states and to include internal atomic states.

We acknowledge discussions with Alexander Szameit
and Leticia Tarruell. This work was supported by the EU IP
SIQS, EU STREP EQuaM, ERC AdG OSYRIS, ERC
synergy Grant UQUAM, Fundació Cellex, and SFB FoQuS
(FWF Project No. F4006-N16).

FIG. 3 (color online). (a) Haldane-like lattice model with real
tunneling parameter J and complex tunneling parameter J0eiθ.
(b) nðk; tÞ changes strongly with time (J0 ¼ 0.3J, θ ¼ 0.4π).
(c) The winding of the phase φk is opposite around the two Dirac
points [white circles in (b)], independently of θ. (d),(e) In the
topologically trivial phase (d, J0 ¼ 0.3J and θ ¼ 0), the plotted
quantity ĥz has the same sign at the two Dirac cones, while in the
topological phase [(d), J0 ¼ 0.3J and θ ¼ 0.4π] it has opposite
sign; this sign change is clearly visible as a kink in the measured
quantity jĥzj (lower plots showing jĥzj along the dashed lines;
lines: ideal case, bullets: data for trapped system with normal-
distributed noise of variance 0.05, using realistic parameters
[13,15], J=ℏ ¼ 2π × 0.26 kHz, ω ¼ 2π × 10 kHz, trapping fre-
quency 2π × 50 Hz, lattice spacing 380 nm). (f) The coarse-
grained Chern number computed following Ref. [48] reproduces
the exact result already for a limited resolution of 4 × 4 reciprocal
lattice points.
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