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The magnetic reconnection process is studied in relativistic pair plasmas when the thermal and inertial
properties of the magnetohydrodynamical fluid are included. We find that in both Sweet-Parker and
Petschek relativistic scenarios there is an increase of the reconnection rate owing to the thermal-inertial
effects, both satisfying causality. To characterize the new effects we define a thermal-inertial number which
is independent of the relativistic Lundquist number, implying that reconnection can be achieved even for
vanishing resistivity as a result of only thermal-inertial effects. The current model has fundamental
importance for relativistic collisionless reconnection, as it constitutes the simplest way to get reconnection
rates faster than those accessible with the sole resistivity.
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Magnetic reconnection is a fundamental plasma process
which is widely believed to play a key role in many
phenomena occurring in laboratory, space, and astrophysi-
cal plasmas. Most of the progress in the theory of magnetic
reconnection has been done in the nonrelativistic regime
[1,2]. However, in recent years the importance of recon-
nection processes has been recognized in magnetically
dominated environments where special relativistic effects
have to be considered [3,4]. Indeed, in these environments
the magnetic energy density B2=8π largely exceeds the rest
mass energy densitymnc2, and thus the speed of the Alfvén
wave vA ¼ cB=ð4πmnc2 þ B2Þ1=2 approaches the speed of
light c. In particular, relativistic reconnection is extremely
important in pair (electron-positron) plasmas such as those
in pulsar magnetospheres [5,6], pulsar winds [7,8], soft
gamma-ray repeaters [9,10], jets from gamma-ray bursts
[11,12], and from active galactic nuclei [13,14].
In spite of the fact that relativistic magnetic reconnection

is becoming increasingly important in many aspects of
modern astrophysics, only a few theoretical studies on the
fundamental physics have been done. The problem of the
relativistic generalization of the classical Sweet-Parker and
Petschek reconnection models was approached for the first
time by Blackman and Field [15], who argued that because
of Lorentz contraction the inflow velocity of the reconnect-
ing magnetic field is greatly enhanced and may approach
the speed of light. Their conclusion was confirmed by
Lyutikov and Uzdensky [16] for the relativistic Sweet-
Parker scenario. On the contrary, a subsequent analysis by
Lyubarsky [17] showed that the reconnection inflow
remains subrelativistic in both scenarios. These pioneer
works were followed by a study of the relativistic Petschek-
type shock with pressure anisotropy [18], and by resistive
relativistic magnetohydrodynamic (RMHD) simulations

which seemed to be more consistent with Lyubarsky’s
theory [19–21].
It is important to point out that all previous theoretical

models of relativistic reconnection were developed in the
framework of resistiveRMHD.However, collisionless effects
can significantly affect the reconnection process and their
investigation in the relativistic regime is an open problem in
astrophysics and fundamental physics. As a contribution
towards the clarification of this point, here we extend the
previous relativistic reconnection models by considering
also thermal and inertial effects in pair plasmas. For this
purpose we adopt a relativistic magnetohydrodynamical
theory derived from first principles from a two-fluid pair
plasma, andwe analyze the magnetic reconnection process in
the Sweet-Parker andPetschek configurations.We find that in
both scenarios the thermal-inertial effects play an essential
role which bring new contributions to the reconnection
process as compared to the purely resistive case.
Generalized RMHD equations.—A set of equations for

a RMHD pair plasma has been recently derived by Koide
[22]. These equations represent a generalization to the
previous simple models [23,24], since they are derived in
a systematic and rigorous way from the equations of a two-
fluid plasma. For a RMHD pair plasma with density n,
normalized four-velocityUμ (such thatUμUμ ¼ ημνUμUν ¼
−1), normalized four-current density Jμ, and a metric
signature ημν ¼ ð−1; 1; 1; 1Þ, the generalized RMHD equa-
tions [22] are composed by the continuity equation

∂μðnUμÞ ¼ 0; ð1Þ
the generalized momentum equation

∂ν

�
hUνUμ þ h

4n2e2
JνJμ

�
¼ −∂μpþ JνFμν; ð2Þ
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and the generalized Ohm’s law

1

4ne
∂ν

�
h
ne

ðUμJν þ JμUνÞ
�

¼ UνFμν − ηc½Jμ þ UαJαUμð1þ ΘÞ�: ð3Þ

Here, h is the enthalpy of the RMHD pair plasma and e
stands for the electron charge. The pressure is represented by
p, whereas Fμν is the electromagnetic tensor field. The
resistivity can be recognized as η, and Θ is the thermal
energy exchange rate from negative to positive charged
fluids. In the above model the variation of enthalpy and
pressure between the positively and negatively charged
fluids are considered as negligible.
For a pair plasma, Koide [22] obtained that Θ ¼

2ϖ½ðUμJμÞ2 þ JμJμ�=½4n2e2 − ðUμJμÞ2�, where ϖ is the
coefficient of thermalized energy due to the friction of
the fluids. In general, we can define a thermal function
f ¼ fðTÞ ¼ h=ðmnc2Þ depending only on the temper-
ature T. For the simplest calculation of the enthalpy
h of a relativistic plasma in thermal equilibrium [25],
f ¼ K3ðmc2=kBTÞ=K2ðmc2=kBTÞ, where Kn is the modi-
fied Bessel function of order n and kB is the Boltzmann
constant. Collision effects have not been taken into
account to obtain h, and for the purposes of the current
work we will consider it as the first approximation to a
more general form of the enthalpy. For relativistically hot
plasmas kBT ≫ mc2, so that f ≈ 4kBT=mc2 and h ≈ 4p,
with the plasma pressure p ¼ nkBT.
The previous set of equations must be complemented by

Maxwell’s equations

∂νFμν ¼ 4πJμ; ∂νF�μν ¼ 0; ð4Þ

where F�μν is the dual tensor density of the electromagnetic
tensor.
In this generalized RMHD model, the inertial effects,

proportional to h, modify the momentum equation and
Ohm’s law. In Eq. (2), the current inertia effects arise from
the left-hand side. On the other hand, in the left-hand side
of Eq. (3) the thermal electromotive effects appear as
inertial effects corrections.
Sweet-Parker configuration.—As in the classical Sweet-

Parker theory, in our analysis we consider an elongated
magnetic diffusion region (with length 2L and width
2δ ≪ 2L) which lies between opposite directed magnetic
field lines, as shown in Fig. 1(a). Outside the diffusion
region the plasma is highly ideal, such that the frozen-in
flux condition holds. The magnetic field and the plasma
velocity are in the xy plane, with the origin (0,0) represent-
ing a stagnation point for the flow. We consider a steady
state and we assume that all the physical quantities are
independent of z. Furthermore, the magnetic field upstream
of the diffusion region, indicated with B0, is in the x

direction and of equal strength on opposite sides of
the layer.
Since we are considering magnetically dominated envi-

ronments, the upstream plasma pressure can be neglected
compared to the magnetic pressure, and thus the pressure
balance across the layer gives p ¼ B2

0=8π, where p is the
plasma pressure in the center of the diffusion region.
Besides, close to the neutral line we find that Ex ≈ 0 ≈
Ey and Bz ≈ 0, while J0 ¼ 0 ≈ Jx, and vy ≈ 0 ≈ vz, imply-
ing that UμJμ ≈ 0. Therefore, there is no contribution from
the thermal energy exchange rate between the charged
fluids. Then, from the momentum equation (2) along the
neutral line we have

∂x

�
hγout

vout
c

Uμ

�
¼ −∂μpþ JνFμν; ð5Þ

where vout is the outflow velocity with its respective
Lorentz factor γout ¼ ð1 − v2out=c2Þ−1=2. The current inertia
do not play any role in Eq. (5) due to the direction of the
current density in the reconnection layer. In the x direction,
Eq. (5) implies that

hγ2out
v2out
c2

þ p ¼ −LJzBy ∼
B2
0

4π
¼ 2p; ð6Þ

where we have used Maxwell’s equation (4) to estimate the
current density in the z direction Jz ≈ −B0=ð4πδÞ, and the
flux conservation for the outflow magnetic field strength
By ∼ B0δ=L. Equation (6) suggests that hγ2outv2out=c2 ∼ p.
Since for relativistically hot plasmas h ≈ 4p, it follows
that the outflow velocity is mildly relativistic with vout ∼ c
and γout ∼ 1, as shown in the purely resistive case by
Lyubarsky [17].

FIG. 1. Geometry of the (a) Sweet-Parker and (b) Petschek
configurations. The magnetic diffusion regions are shaded, while
slow mode shocks are indicated by dashed lines.
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In the diffusion region, the generalized Ohm’s law (3)
becomes

ηcJμ þ 1

4ne
∂ν

�
h
ne

ðUμJν þ JμUνÞ
�
¼ UνFμν; ð7Þ

since there is no contribution from the thermal energy
exchange rate close to the neutral line. Following the
Sweet-Parker scheme, we find that the thermal electromo-
tive effects in the reconnection layer are estimated as
∂x½hðUμJx þ JμUxÞ=ðneÞ� ≈ ∂x½hJμUx=ne� ∼ hγoutvoutJμ=
ðLnecÞ. Then, Eq. (7) can be reduced to

ðηþ βÞJμ ¼ 1

c
UνFμν; ð8Þ

where we have introduced a thermal-inertial parameter
defined as

hγoutvout
4n2e2Lc2

∼
h

4n2e2Lc
¼ πfλ2e

Lc
¼ β; ð9Þ

with λe ¼ c=ωp indicating the electron skin depth and ωp
the electron plasma frequency. We can see that thermal
electromotive effects introduce an inertial correction to
Ohm’s law, whose y and z components yield Jy ¼ 0 and

ðηþ βÞJz ¼ 1

c
Ez: ð10Þ

In a steady state two-dimensional configuration Ez is
uniform by virtue of Maxwell’s equation (4). Hence, Ez in
Eq. (10) can be evaluated from Ohm’s law
in the ideal region just upstream of the reconnection
layer, which gives Ez ¼ vinB0=c. Moreover, balancing the
inflowing electromagnetic energy with the energy outflow,
i.e., LEzB0c=4π ∼ δhvout, we have that δ ∼ ðvin=voutÞL∼
ðvin=cÞL, implying that the plasma is approximately incom-
pressible. From this relation, using that δ ≈ B0=ð4πJzÞ
and eliminating Jz through Eq. (10), we find the recon-
nection rate

vin
c

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S
þ βc
4πL

r
; ð11Þ

where S ¼ 4πL=ηc ≫ 1 is the relativistic Lundquist num-
ber. Thermal-inertial effects contribute to the reconnection
layer width and to the reconnection rate through the
“thermal-inertial number”

4πL
βc

¼ 4

fd2e
; ð12Þ

where de ¼ λe=L is the dimensionless electron inertial
length. We can see that βc introduces relativistic effects
through the enthalpy h or the thermal function f, which
depends on the ratio between the particles’ rest mass

energy and the relativistic temperature. For nonrelativistic
plasmas, f ¼ 1. In a general case, f ≥ 1 always (for
relativistically hot plasmas f ≫ 1), but since the diffusion
region is supposed to be localized, i.e., de ≪ 1, we expect
4=fd2e > 1. Hence, although the thermal-inertial effects
contribute to significantly increase the reconnection rate
with respect to the purely resistive case [17], the inflow
velocity of the reconnecting magnetic field is expected to
remain subrelativistic.
Thermal-inertial effects were not considered in previous

analytic treatments [15–17] whose purpose was to formulate
a relativistic generalization of the Sweet-Parker reconnection
model. However, we would like to stress that thermal-inertial
effects by themselves allow magnetic reconnection to take
place. These effects become relevant if β ≳ η, namely when
the thermal-inertial layer width δti ∼

ffiffiffi
f

p
λe=2 is of the same

order or larger than the resistive layer width δη ∼ S−1=2L. In
particular, for hot plasmas in which f ≈ 4kBT=mc2, this
condition can be written as kBT=mc2 ≳ 1=Sd2e, which gives
a relation between the thermal to electron rest mass energy
ratio and the nonidealness of the plasma.
Petschek configuration.—It will be shown that thermal-

inertial effects play a key role also in the Petschek scenario in
which a short diffusion region (of length 2L� ≪ 2L) acts as a
sourcefortwopairsofslowmodeshocks,asshowninFig.1(b).
The shocks stand in the flow when a steady state is reached,
markingtheboundariesof theoutflowregions.Inthisscenario,
the magnetic energy conversion takes place not only in the
diffusion region, but also across the slow mode shocks.
In order to evaluate the reconnection rate in this

configuration, we need to formulate the jump relations
at the shocks for the relativistic pair plasma fluid. For
this purpose, we observe that the momentum equation (2)
can be written in the form of the conservation law
∂νTμν ¼ 0, where the total energy momentum is
Tμν ¼ Tμν

f þ Tμν
em, with the energy-momentum tensor of

the fluid Tμν
f ¼ hUμUν þ hJμJν=ð4n2e2Þ þ pημν, and the

electromagnetic energy-momentum tensor Tμν
em ¼ FμβFν

β=
4π − FαβFαβη

μν=16π. Then, in a reference frame in which
the shock front is at rest, from the conservation of energy
and momentum fluxes we get

ρ1γ
2
1

v1
c
þ 1

4π
Bt1Et ¼ h2γ22

vn2
c

þ 1

4π
Bt2Et; ð13Þ

ρ1γ
2
1

v21
c2

þ ρ1
4n2e2

J21 þ
1

8π
B2
t1 ¼ h2γ22

v2n2
c2

þ h2
4n2e2

J2n2

þ p2 þ
1

8π
B2
t2; ð14Þ

−
1

4π
BnBt1 ¼ h2γ22

vn2vt2
c2

þ h2
4n2e2

Jn2Jt2 −
1

4π
BnBt2;

ð15Þ
where the subscripts 1 and 2 refer to the upstream and
downstream flows, respectively, and the subscripts n and t
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refer to the normal and tangential components of the fields
with respect to the shock plane. Alsowe assume that the flow
is cold upstream (f1 ¼ 1; h1 ¼ mnc2 ¼ ρ1) and hot down-
stream (h2 ¼ 4p2).
The set of Eqs. (13)–(15) contains the corrections of the

current inertia effects. In the same fashion, from Ohm’s law
(3), we have in the upstream flow (with resistivity η ¼ 0)

1

4ne2cγ1
∂n

�
ρ1
n
γ1v1J1

�
¼ Et −

v1
c
Bt1; ð16Þ

where ∂n is the space derivative along the normal direction
of the shock plane. For the downstream flow, Ohm’s law
becomes

1

4ne2cγ2
∂∥

�
h2
n
γ1v1Jt2 þ

h2
n
J1γ2vt2

�

þ 1

4ne2cγ2
∂n

�
h2
n
J1γ2vn2 þ

h2
n
Jn2γ2vt2

�

¼ Et þ
vt2
c
Bn −

vn2
c

Bt2; ð17Þ

where ∂∥ is the space derivative in the tangential direction
to the shock plane.
This model has to be solved in the Petschek scenario in

which the standing slow mode shocks are of the switch-off
type, namely with Bt2 ¼ 0. The currents can be estimated
from Maxwell’s equations (4), so that 4πJn2 ∼ ∂∥Bt2 ¼ 0,
4πJt2 ∼ −∂∥Bn, and 4πJ1 ∼ −∂∥Bt1. The inertial effects
introduce nonlinear terms that make a solution difficult to
foresee. However, we must notice that the magnetic field
gradients along the shock plane are in general negligible, so
that a uniform shock plane can be formed at large distances.
This is indeed confirmed by simulations of electron-positron
reconnection [26]. Thereby, we can assume ∂∥Bn≈
0 ≈ ∂∥Bt1, which gives that J1 ≈ 0 ≈ Jt2 on the shock plane.
This implies that the previous Eqs. (13)–(15) reduce to

ρ1γ
2
1v1 þ

c
4π

Bt1Et ¼ h2γ22vn2; ð18Þ

ρ1γ
2
1v

2
1 þ

c2

8π
B2
t1 ¼ h2γ22v

2
n2 þ c2p2; ð19Þ

−
c2

4π
BnBt1 ¼ h2γ22vn2vt2; ð20Þ

whereas Eqs. (16) and (17) combine to give

cEt ¼ v1Bt1 ¼ −vt2Bn: ð21Þ
The above system of equations is the same one found by

Lyubarsky [17]. The thermal-inertial effects play a negligible
role across the switch-off shocks; however, wewill show that

they are crucial in the diffusion region. Equations (18), (20),
and (21) can be combined to find that

v21
c2

¼ B2
n

4πγ21ρ1 þ B2
t1
¼ tan2θ

1þ 1=ðσ1cos2θÞ
; ð22Þ

showing that the velocity of the upstream flow is the Alfvén
velocity. Here we have indicated with θ the angle between
the magnetic field and the shock plane, so that Bt1 ¼
B1 cos θ and Bn ¼ B1 sin θ, while σ1 ¼ B2

1=ð4πγ21ρ1Þ is
the magnetization parameter upstream to the shock. In
magnetically dominated environments σ1 ≫ 1; therefore,
assuming θ < π=4, the upstream velocity becomes
v1 ≈ c tan θ. The other variables can also be solved in
terms of θ obtaining [17] vt2 ≈ −cþ csec2θ=2σ1, vn2≈
c tan θsec2θ=2σ1, γ2 ≈

ffiffiffiffiffi
σ1

p
cos θ, and p2 ≈ B2

1cos
2θ=8π.

Thus, the outflow velocity is ultrarelativistic (γout ≫ 1)
and forms an angle φ with the slow mode shock that is
inversely proportional to the magnetization parameter σ1,
since tanφ ≈ − tan θsec2θ=σ1 for σ1 ≫ 1.
Petschek’s regime is “almost uniform,” as it assumes that

the magnetic field in the inflow region is a small perturbation
to a uniform magnetic field B0. Furthermore, it is assumed
that the magnetic field changes mainly within the diffusion
region, whereas outside it is irrotational andB ¼ ∇ψ , so that
∂μ∂μψ ¼ 0 in a steady state. Following a standard procedure
[1], the magnetic field in the upper inflow region can be
evaluated adding B0 to the magnetic field obtained by
solving Laplace’s equation in the upper half-plane with
appropriate boundary conditions. To lowest order, neglecting
the inclination of the shocks, these conditions areByðx; 0Þ ¼
−2Bn for −L ≤ x ≤ −L�, Byðx; 0Þ ¼ 2Bn for L� ≤ x ≤ L,
and a magnetic field perturbation that vanish at infinity and
at the diffusion region. Then, the magnetic field just
upstream of the diffusion region is

Bxð0; δÞ ¼ B0

�
1 −

4vin
πc

ln
L
L�

�
: ð23Þ

The length L� can be estimated from the Sweet-Parker
relations for the diffusion region and flux conservation
vyð0; δÞBxð0; δÞ ¼ vinB0. Therefore, we get

L� ∼
ðηcþ βcÞ

4π

�
c
vin

�
2

: ð24Þ

As in the classical Petschek model, the mechanism hangs
itself when the magnetic field immediately upstream of the
diffusion region becomes too small. The maximum recon-
nection rate occurs for Bxð0; δÞ=B0 ∼ 1=2, so that from
Eq. (23) we obtain

vin
c

����
max

∼
π

8

�
ln

�
4πL

ηcþ βc

��
−1
: ð25Þ

This relation shows that the reconnection rate can be high
also for vanishing resistivity because of thermal-inertial
effects. These effects become relevant under the same
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conditions of the relativistic Sweet-Parker scenario, so that in
hot tenuous plasmas they can be responsible for a substantial
increase of the reconnection rate.
In both models studied here, the enhancement of the

reconnection rate with respect to the purely resistive case
can be understood by recognizing that β plays the role of a
“thermal-inertial resistivity” that limits the response of the
electrons and positrons to the reconnection electric field.
Thereby, the effective resistivity can be significantly
heightened, leading to a diffusion region with a smaller
aspect ratio that can sustain fast magnetic field line
merging. The thermal-inertial resistivity behaves as
β ∝ 1=n, which is consistent with the results of recent
numerical simulations of pair plasma reconnection [26,27],
where it was found that the reconnection rate becomes
higher as the particle number density decreases.
Thermal-inertial effects allow the decoupling of the

plasma motion from that of the magnetic field lines also
in the nonrelativistic limit, but in relativistically hot
plasmas they are enhanced due to the increase of the
thermal function f. Furthermore, we observe that since the
information propagation velocity is given by the “head
velocity” vh ¼ limω→∞ω=k [28], which is always ≤ c in
generalized RMHD, the thermal-inertial effects, as well as
the classical resistive effects, always satisfy causality.
Conclusions.—Using an improved set of equations for

RMHD plasmas, in which collisionless effects are consid-
ered, we have found robust features of the thermal and
inertial effects on the magnetic reconnection process in
relativistic pair plasmas. In both Sweet-Parker and Petschek
configurations the thermal and inertial effects introduce
new corrections to the reconnection rates. They provide an
effective mechanism for the reconnection of magnetic field
lines in the relativistic regime, which also works for
vanishing resistivity. We have defined a thermal-inertial
number (12) that characterizes the strength of these effects.
This new number depends on a thermal function f, varying
according to the temperature of the plasma, and on the
electron inertial length λe, which is inversely proportional
to the square root of the electron number density. Thereby,
the thermal-inertial effects become relevant in hot tenuous
plasmas. We have shown that if the thermal-inertial layer
width δti ∼

ffiffiffi
f

p
λe=2 exceeds the resistive layer width

δη ∼ S−1=2 L, the reconnection process enters into the
collisionless regime in which thermal-inertial effects domi-
nate. As a result, the reconnection rate in the relativistic
regime can be much higher than previously predicted by
purely resistive RMHD models.
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