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We revisit the Saffman-Taylor experiment focusing on the forced-imbibition regime where the
displacing fluid wets the confining walls. We demonstrate a new class of invasion patterns that do not
display the canonical fingering shapes. We evidence that these unanticipated patterns stem from the
entrainment of thin liquid films from the moving meniscus. We then theoretically explain how the interplay
between the fluid flow at the contact line and the interface deformations results in the destabilization of
liquid interfaces. In addition, this minimal model conveys a unified framework which consistently accounts
for all the liquid-entrainment scenarios that have been hitherto reported.
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What liquid should be used to clean a hydrophilic
container filled with an organic fluid? As it turns out, this
seemingly trivial question is of major importance in a
number of industrial process, including enhanced recovery
of the so-called heavy oils. An elementary thermodynamic
reasoning would suggest using an aqueous liquid making
the smallest possible contact angle with the container
walls. In this Letter we show that the answer is actually
more subtle when the dynamics of the fluid interfaces is
considered.
From a fundamental perspective, liquid-liquid interfaces

driven past solid substrates have been extensively used as a
proxy to investigate nonlinear-pattern formation such as
Laplacian growth processes [1–4]. Until now, the over-
whelming majority of the experiments have been performed
in the drainage regime, where a low-viscosity fluid displaces
a high-viscosity fluid which preferentially wets the solid.
From the Saffman-Taylor fingers growing in Hele-Shaw
cells [1,2,5] to the fractal patterns found in porous media
[3,4,6], the salient features of all the drainage patterns are
very well captured by coarse-grained front-propagation
models that all discard the details of the interactions between
the liquid and the solid walls. On the other hand, the
experiments on imbibition dynamics, where the less viscous
phase preferentially wets the solid walls, have been scarce
and have yielded, somehow, puzzling results [7–9]. The first
quantitative experiment in a prototypal Hele-Shaw geometry
was performed with colloidal liquids only very recently [9].
Confocal imaging revealed a novel instability of the menis-
cus resulting in the formation of a liquid sheet in the
midplane of the confinement. However, this instability
does not interfere with the growth of the viscous fingers.
In contrast, imbibition experiments in porous media had
revealed a marked qualitative change in the morphologies
of the invasion patterns [4,7,8].

Here, we revisit the seminal Saffman-Taylor experiment
using water to displace viscous oils filling hydrophilic
microfluidic channels. We demonstrate a novel type of
liquid-entrainment instability and the subsequent growth of
unanticipated imbibition patterns. We first quantitatively
characterize their shape and propagation dynamics. We
then theoretically elucidate that the intimate coupling
between the short-scale molecular interactions with the
solid and the large-scale flows results in the destabilization
of the two-fluid interface. This model conveys a unified
framework to consistently account for all the liquid entrain-
ment scenarios that have been reported so far [9–11].
The experiment is thoroughly described in the

Supplemental Material [12]. Briefly, a colored aqueous
solution is injected into a microfluidic Hele-Shaw channel
filled with silicon oil of viscosity ηoil ranging from 0.65 cp
to to 3500 cp. The invasion patterns are observed with a
CCD camera with a spacial resolution of 12 μm=pxl.
To gain more knowledge about their 3D morphology, we
also convert the transmitted-light intensity into the local
water-pattern thickness with a resolution of 5 μm [13]. The
channels are made by bonding two glass slides with
double-sided tape. Prior to assembly, a thin film of
thiolene-based resins is deposited on the two glass slides
(NOA81, Norland Optical Adhesives). Using NOA81
surfaces, the advancing contact angle of the aqueous
solution immersed in silicon oil can be continuously varied
from θ0 ¼ 120� 2° down to θ0 ¼ 7� 2° by means of UV
exposure [14]. The width and the length of the main
channel are W ¼ 5 mm, and L ¼ 4.5 cm, respectively,
Fig. 1. The channel height, H ¼ 100 μm, is constant over
the entire device and is unchanged as the fluids flow. The
device is filled following a systematic sequence of injection
steps described in Ref. [12]. This protocol prevents any
possible modification of the wetting properties of the walls
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by the aqueous liquid prior to the imbibition experiment. In
addition, the chips are not recycled. More than 50 chips
were used to produced the data set introduced below.
We first show in Fig. 1(a) the result of a standard

drainage experiment, where silicon oil of viscosity ηoil ¼
103 cp is displaced in an hydrophobic channel (θ0 ¼ 120°).
The wedge-shape entrance of the main channel (shown in
a figure in the Supplemental Material [12]) promotes tip
splitting in this typical Saffman-Taylor pattern [15]. The
color coding in Fig. 1(a) indicates the local water thickness,
the two fingers clearly fill the gap of the shallow channel.
We also note that they grow along the side walls which they
partly wet. The very same type of finger shapes were
observed over a decade of flow rates: 0.2 μl=min < Q <
1.8 μl=min. In contrast, Fig. 1(b) and movie 1 in the
Supplemental Material [12] correspond to an imbibition
experiment performed at small flow rate in an hydrophilic
channel (θ0 ¼ 7°). The marked difference between these
two fingering patterns clearly reveals the impact of θ0
on the water-front dynamics. The branching level is
significantly increased while the width of the fingers is
reduced compared to the drainage regime. More surpris-
ingly, increasing the imposed water flow rate above Q⋆ ¼
0.4 μl=min, the imbibition dynamics does not reduce to
the mere propagation of a sharp water front any more, see
Figs. 1(c) and 1(d) and movies 2 and 3 in the Supplemental
Material [12]. Thin water films are entrained from the
finger tip throughout the oil phase, and merge to form
complex interconnected patterns. Increasing the flow rate,
the number of narrow thin films increases. Using a micro-
scope and a 20× objective we found that the films
propagate along the top and bottom walls. At this point
we shall note that this latter observation is at odds with
the entrainment dynamics reported in Ref. [9], where thin
films were entrained in the midplane between the two
confining walls.

Figure 2(a) conveys a clear picture of the interface
dynamics at large scales. The imbibition-pattern thickness
averaged over the y direction, hhðx; y; tÞiy, is plotted as a
function of time and of the x position along the channel. At
t ¼ 0, the flow rate is smaller than Q⋆, and a branched
finger grows at a constant speed. As Q is increased above
Q⋆, a thin water film is entrained and forms a rim. As
sketched in Fig. 2(b), this rim is separated by the initial
finger by an even thinner flat film. The rim moves at
a constant speed ahead of the initial thick finger, which keeps
on growing at a constant, yet smaller velocity. The local
shape of the water-oil interface is sketched in Fig. 2(b).
The main water finger slowly meanders in the channel
following the interconnected track left by the entrained
films thereby trapping small oil pockets in the channel. The
topology of the resulting holey imbibition pattern, Fig. 1(d),
is not akin to the branched structure emerging from a
Laplacian growth process as observed in all the drainage
experiments. This observation already suggests that the
3D nature of the fluid flows plays a significant role in this
pattern formation [16].
In order to further characterize the pattern hetero-

geneities, we measured the instantaneous distribution
Pðh; tÞ of the film-thickness field. Pðh; tÞ was found to
be stationary, in agreement with the constant speed of the
two fronts separating the three regions in Fig. 2(a) (finger,
flat film, and rim). PðhÞ is typically composed of four
peaks, that may overlap at high flow rates, Fig. 2(b). The
leftmost peak corresponds to the edges of the pattern where
the water thickness is by definition vanishingly small. The
second peak corresponds to the flat-film regions. The third
and broadest peak is centered on the typical rim-thickness
value. The rightmost narrow peak located at h ¼ H
corresponds to the main finger. The strong increase with
Q of the leftmost-peak amplitude reflects the increase of
the perimeter-over-surface ratio at high water injection
rate. Figure 2(c) demonstrates that the mean thickness of
the films hhðx; yÞix;y decreases linearly with the imposed
flow rate.
To gain more physical insight, we henceforth describe

the imbibition process in terms of the three dimensionless
numbers that control the interface dynamics: the advancing
contact angle θ0, the ratio of the ratio of the viscosity
of the two fluids η≡ ηoil=ηwater, and the capillary number
Ca ¼ ηwaterV=γ, where V is the interface velocity, and γ is
the surface energy of the two-fluids interface. We measured
γ using the pendant drop method. γ does not depend on the
silicon-oil molecular weight: γ ¼ 13� 2 mN=m. Here we
focus on the roles of Ca and η for a small contact angle
value, θ0 ¼ 7°. Repeating the same experiment with oils of
different viscosity, we measured the local and instantaneous
velocity of the finger tip from which a water film is
entrained. This measurement defines the critical capillary
number Ca⋆ above which the meniscus is unstable.
Unexpectedly, Ca⋆ undergoes nonmonotonic variations

(a)

(b)

(c)

(d)

FIG. 1 (color online). Viscous fingering pattern, and associated
water-thickness fields, ηoil ¼ 103 cp. (a) Drainage pattern,
Q ¼ 0.5 μl=min. (b), (c) and (d) Imbibition patterns observed
at three different flow rates. See also movies 1, 2, and 3 in the
Supplemental Material [12].
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with η and displays a maximum for η ∼ 100, Fig. 2(d). This
observation rules out a naive scaling argument which
would consist in comparing the magnitudes of the
Laplace pressure and of the viscous stress in the oil, or
in the water phase at the macroscopic scale H. Such
estimates would give a scaling law Ca⋆ ∼ 1=η, or
Ca⋆ ∼ 1, none of which are experimentally observed. To
go beyond this oversimplified description, we now intro-
duce a minimal model which accounts for the interplay
between the fluid flows and the meniscus shape at all
scales.
For the sake of simplicity we ignore curvature effects in

the xy plane, and focus on steadily moving interfaces that
are translationally invariant along the y direction. In all
that follows the interface is described in the frame moving
with the contact line. The meniscus shape is determined
by the local balance between the Laplace pressure and the
normal-stress discontinuity across the fluid interface.
Introducing the curvilinear coordinate along the interface,
s, and the local interface curvature κ, the unit-vector
normal to the surface n̂, this force-balance equation takes
a compact form

γκðsÞn̂ ¼ Δσ · n̂; ð1Þ

where, the σ is the stress discontinuity at the interface.
This equation couples to the Stokes equations for the two
fluid flows. To solve this demanding problem, we built on
Refs. [17,18], and make an additional ansatz which has
proven to yield excellent agreement with lattice Boltzman
simulations [19]. The velocity and the pressure fields in
both phases are assumed to be locally given by the Hu and
Scriven solutions for the flow in a wedge of angle θðsÞ,
where θðsÞ is the local angle between the tangent vector
and the x axis, Fig. 3(a) [20]. Within this approximation,
the stress discontinuity in Eq. (1) is readily computed, and
the shape of the interface is fully prescribed by completing
Eq. (1) with the boundary conditions: θðs ¼ 0Þ ¼ θ0,
θðs ¼ l=2Þ ¼ π=2, where l is the curvilinear length of

the meniscus. This boundary-value problem is then
numerically solved first by recasting Eq. (1) into a
four-dimensional dynamical system. The stress diver-
gence at the contact line is regularized by introducing a
finite slip length λ ≪ H at the walls. The resulting
well-behaved differential equations are then integrated
using an iterative collocation method as detailed in the
Supplemental Material [12]. We shall note that the
following results depend very weakly on λ which is
henceforth set to λ ¼ 10−5H.
The evolution of the meniscus shape with the capillary

number is shown in Fig. 3(a) for η ¼ 103. Increasing Ca
increases the meniscus length and reduces the apparent
contact angle value θapp. θapp is defined as the value of θðsÞ
where the interface curvature is minimal. More quantita-
tively, Fig. 3(b) shows that θapp decays to 0 for a finite value
of Ca above which no stationary solution is found for the
meniscus profile: in agreement with our experimental
findings, a low-viscosity-liquid film is entrained along

(a)

(c) (d)

(b)

FIG. 3 (color online). (a) Computed meniscus profile for
increasing values of Ca (from black to red). θ0 ¼ 10°,
η ¼ 103, λ=H ¼ 10−5. (b) Variations of the apparent contact
angle with Ca. Same parameters as in (a). (c) Computed meniscus
profile for increasing values of Ca (from black to blue). θ0 ¼ 10°,
η ¼ 10−2, λ=H ¼ 10−5. (d) Variations of the apparent contact
angle with Ca. Same parameters as in (c).

(a) (b) (c) (d)

FIG. 2 (color online). Forced imbibition dynamics on a hydrophilic surface: θ0 ¼ 7°. (a) Spatiotemporal plot of hhðx; tÞiy for ηoil ¼
103 cp and Q ¼ 1.5 μl=min. (b) Sketch of the entrained film in the xz plane and probability distribution functions of the water-pattern
thickness. Full line: Q ¼ 1.8 μl=min, dashed line: Q ¼ 1.5 μl=min, dotted line: Q ¼ 0.5 μl=min, ηoil ¼ 103 cp. The three curves are
shifted by a constant offset to facilitate the reading. (c) Mean film thickness plotted versus the imposed water flow rate. (d) Phase
diagram. Symbols: local critical capillary number at which entrainment occurs, Ca⋆ plotted versus the viscosity ratio between the two
fluids, η. Error bars: one standard deviation.
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the walls. However, as exemplified in Fig. 3(c), when
considering viscosity ratios smaller than η⋆ ¼ 32, we found
another instability mechanism. As Ca increases, the ap-
parent curvature of the meniscus decreases and changes
sign. As a result, the apparent contact angle increases
toward π, and above a critical Ca value, again, no stationary
solution is found. However, this dual instability yields
a meniscus shape opposite to the one found for η > η⋆; here
a liquid sheet grows upstream in the midplane between
the two walls. The interface profile shown in Fig. 3(c)
corresponds to the one reported in Ref. [9] for colloidal
liquids with moderate viscosity contrast, η ¼ 2.7.
Therefore our numerical results solve the apparent contra-
diction between Ref. [9] and our experimental findings:
liquid menisci driven past solid surfaces can experience
two qualitatively different liquid-entrainment instabilities.
We stress that both scenarios echo the intricate coupling
between the two fluid flows at the contact line. Even
when it is associated with the smaller viscosity, the flow in
the wetting phase significantly alters the stability of the
meniscus upon imbibition dynamics. Sufficiently close to
the contact line, due to the geometrical divergence of the
strain rate, σwater compares to σoil. In the absence of any
intrinsic length scale in Eq. (1), and in the Stokes equation,
the local modification of the meniscus curvature by the
flow at the tip of the liquid wedge propagates up to the
macroscopic scales.
To further check the consistency of our predictions, we

conducted experiments with silicon oil having an ultralow
viscosity, η ¼ 0.65. Even though this viscosity ratio
prevents the formation of viscous fingers in the xy plane,
we did observe a strong change in the liquid motion
at sufficiently high imposed flow rates. Again, above a
critical (local) capillary number [open symbol in Fig. 2(d)],
a liquid sheet is entrained between the two plates ahead
of the main front, and subsequently rewets the confining
wall. Incidentally, oil droplets are trapped on the two solid
surfaces, see movie 4 in the Supplemental Material [12].
This observation is akin to the ones reported both in
Ref. [9], and in Ref. [18] for air entrainment in a liquid
bath. Together with our first experimental findings, this
last experiment unambiguously confirms that, thin films
can be entrained from a driven meniscus according to
two different scenarios set by the magnitude of the
viscosity ratio.
The two entrainment scenarios define the stability

diagram computed numerically and plotted in Fig. 4(a).
The stable meniscus region in the ðη;CaÞ plane is
bounded by two critical curves Ca⋆ ¼ fðηÞ, that meet
at η ¼ η⋆. Below η⋆ the entrained films propagate in the
midplane of the gap, whereas above η⋆ entrainment
occurs along the confining walls. This prediction captures
well the salient features of the experimental phase
diagram shown in Fig. 2(d). However, we did not achieve
a quantitative agreement. For instance η⋆ was predicted to

be of the order of 32, yet it was measured to be close to
unity. Needless to say that this discrepancy is not really
surprising given the simplification of the meniscus
geometry in the y direction, and potentially due to
pinning effect at the contact line, which we have ignored.
Two last comments are in order. First, a simple criterion

to distinguish between the two entrainment scenarios
can be inferred from the flow-field geometry at the
tip of the liquid wedge. In Figs. 4(b) and 4(c) we show
the flows in a perfect wedge of angle θ0 which is a
reasonable approximation of the meniscus shape in the
vicinity of the triple line. Below η⋆, Fig. 4(c), the stream
lines in the low-viscosity liquid have a simple V shape.
Conversely above η⋆, Fig. 4(b), they split into two
recirculations. Simultaneously the radial velocity of the
fluids at the interface changes sign. Hence, η⋆ is defined as
the viscosity ratio at which the radial component of the
interface velocity vanishes. Second, looking now at the
pressure field in the oil phase, we can gain additional
physical insight into the high η > η⋆ regime. Figure 4(b)
indeed reveals that the tip of the liquid wedge is pulled
downstream by a marked depression spot located at z ¼ 0
in the oil phase, thereby promoting entrainment past the
solid wall.
In summary, we have demonstrated a novel class of

forced imbibition patterns. They stem from the entrainment
of thin films out of the interface between a wetting fluid and
a high viscosity fluid when driven past a solid surface. In
addition, we have introduced a minimal theoretical frame-
work which accounts well for all the imbibition-induced
meniscus instabilities that have been reported so far. A
challenging perspective to these results concerns the
relevance and the impact of the meniscus instabilities to
experiments closer to the actual oil-recovery processes,
where the effect of wetting had been identified as a central
control parameter [21].

(b)

(c)

(a)

FIG. 4 (color online). Numerical results. (a) Stability diagram
for a liquid interface driven in a Hele-Shaw channel: numerics.
θ0 ¼ 10°, λ=H ¼ 10−5. Insets: sketches of the interface shape in
the xz plane. (b) Stream lines and pressure field in a wedge of
angle θ0 ¼ 20° for η=η⋆ ¼ 10. Note the existence of a depression
ahead of the contact line. (c) Stream lines and pressure field in a
wedge of angle θ0 ¼ 20° for η=η⋆ ¼ 0.1. The color coding
indicates the local pressure (arbitrary units).
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