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Ultrafast ionization dynamics within the field half cycle is shown to be the key physical factor that
controls the properties of optical nonlinearity as a function of the carrier wavelength and intensity of a
driving laser field. The Schrödinger-equation analysis of a generic hydrogen quantum system reveals
universal tendencies in the wavelength dependence of optical nonlinearity, shedding light on unusual
properties of optical nonlinearities in the midinfrared. For high-intensity low-frequency fields, free-state
electrons are shown to dominate over bound electrons in the overall nonlinear response of a quantum
system. In this regime, semiclassical models are shown to offer useful insights into the physics behind
optical nonlinearity.
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Ultrafast optical science is rapidly expanding toward
longer wavelengths, into the midinfrared range, opening
the way toward unique regimes of interaction of high-
power coherent electromagnetic radiation with matter [1,2],
highly sensitive standoff detection [3], unusual filamenta-
tion scenarios [4–6], and generation of unprecedented short
field waveforms on the atto- and zeptosecond time scale
[7]. The latest breakthroughs in the development of mid-IR
sources enabling the generation of sub-100-fs pulses with
wavelengths well beyond 3 μm [8] open unique possibil-
ities for systematic studies of optical nonlinearities in the
mid-IR within a broad range of field intensities. The first
experiments in this direction reveal new effects and unusual
regimes of nonlinear-optical interactions [2,5], suggesting
that the extension of standard models of ultrafast nonlinear-
optical dynamics to the midinfrared may be nontrivial.
The main goal of this work is to shed light on unusual

properties of optical nonlinearities in the mid-IR. To this
end, we analyze the behavior of optical nonlinearity of a
generic quantum system as a function of the wavelength of
the driver field. This analysis shows that, as the wavelength
of the driver is increased, free-state electrons start to
dominate over bound electrons in the overall nonlinear
response. In this regime, the main properties of the non-
linear response of a quantum system can be adequately
understood in terms of a semiclassical nonlinear electron
current modulated by the driver field.
Our analysis of the nonlinear response of an atomic

system to a high-intensity laser field is based on the time-
dependent Schrödinger equation (TDSE) for the wave
function ψð~r; tÞ of a hydrogen atom in the presence
of a field with a Gaussian pulse shape defined by
the vector potential linearly polarized along the z axis
AðtÞ ¼ −E0fðtÞ

R
t
−∞ exp½−ðτ=τ0Þ2� cosðω0τÞdτ, where ~r is

the radial coordinate, t is the time, and the fðtÞ factor lets
AðtÞ → 0 at t → ∞. In calculations presented below, we
set fðtÞ equal to 1 for t < 0 and expf−½t=ð10π=ω0Þ�10g for
t > 0. The TDSE is solved on a spatial grid using a
modified fourth-order Crank-Nicholson propagator [9].
For a better convergence of the numerical procedure, the
TDSE is solved in the velocity gauge. This solution is then
transformed to the length gauge, yielding the ψð~r; tÞ
function used in further calculations. At the initial moment
of time the quantum system is assumed to be in the 1s
ground state of a hydrogen atom.
The length-gauge solution to the TDSE is represented

as a sum ψð~r; tÞ ¼ ψbð~r; tÞ þ ψfð~r; tÞ of positive- and
negative-energy terms ψbð~r; tÞ and ψfð~r; tÞ, corresponding
to the bound and free (continuum) states of an electron
[10,11]. The bound-state part of ψð~r; tÞ can be expanded
in the orthonormalized eigenfunctions ψn;lð~rÞ of
the stationary counterpart of the TDSE, ψbð~r; tÞ ¼P

N
n¼1

P
n−1
l¼0 αn;lðtÞψn;lð~rÞ, with the probability to find

an electron in a bound state with quantum numbers n
and l given by jαn;lj2, with the coefficients αn;l ¼R
V ψn;lð~rÞψð~r; tÞd~r found by projecting the numerical
TDSE solution ψð~r; tÞ on the eigenfunctions of a field-
free hydrogen atom. The probability to find an electron in
the continuum, or population of the continuum, at the
instant of time t can be found as CðtÞ ¼ R

V jψfð~r; tÞj2d~r.
The z component of the dipole moment, dzðtÞ ¼R

V eψ
�ð~r; tÞr cosðθÞψð~r; tÞd~r, is then given by a sum of

three terms, dzðtÞ ¼ dbbðtÞ þ dffðtÞ þ dbfðtÞ , which isolate
the contributions of bound-bound, free-free, and bound-
free electron transitions, respectively. While the total dipole
moment is gauge-invariant, the dbb, dff , and dbf terms are
not [11]. However, as shown in an extensive literature,
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including the seminar work by Lamb [12], Keldysh [13],
and Corkum [14], the length gauge can be particularly
helpful in offering an intuitive physical picture of a broad
class of light-matter interactions. Specifically, the length-
gauge analysis of the dbf term has helped understand
high-order harmonic generation in terms of an instructive
semiclassical electron rescattering model [14,15]. Though
applicable within a limited range of field intensities and
frequencies [16], this model has been widely and success-
fully used through the past two decades in ultrafast science
and attosecond technologies [17]. It will be shown below
that the length-gauge analysis of the dff term can further
extend a semiclassical interpretation of the nonlinear-optical
response of a quantum system, helping us to understand the
universal tendencies in the wavelength dependence of optical
nonlinearity in terms of subcycle ionization dynamics.
In Fig. 1, we present typical time dynamics [Figs. 1(a)

and 1(b)] and spectra [Figs. 1(c)–1(e)] of radiation ampli-
tudes abb;ff;bf ∝ ∂2dbb;ff;bf=∂t2 calculated for different
intensities I0 and carrier wavelengths λ0 of the driver field.
The spectra of radiation emitted by different parts of
the dipole moment are seen to exhibit strikingly different

properties, reflecting significant differences in their physi-
cal nature. The intensity of low-order harmonics in the
spectrum of abb [red line in Figs. 1(c) and 1(d)] rapidly
decays as a function of the harmonic order, indicating that,
even for relatively intense laser fields, the driver field can
still be treated perturbatively for bound-state electrons,
which always remain near the atomic core. The harmonic
spectrum of abf sends an opposite message, as it displays an
extended plateau [Fig. 1(e)], which can span over hundreds
of harmonics, followed by a cutoff. These features of
harmonic spectra, widely exploited in attosecond technol-
ogies [17], clearly indicate the nonpreturbative character of
underlying nonlinear-optical processes [14,18].
Notably, the efficiency of high-order harmonic generation

due to the abf term dramatically lowers with an increase in λ0
[cf. the spectra in purple and blue in Fig. 1(e)], confirming
the key tendencies in the wavelength scaling of high-
harmonic generation revealed in the earlier studies [19,20].
As will be shown below, the spectra of low-order harmonics
due to the aff term follow a radically different scaling,
which makes the nonlinearity of free-state electrons a
dominant part of the overall low-order nonlinear-optical
response to high-intensity fields in the mid-IR. For weak
fields and short λ0, the aff term is always smaller than abb
[Figs. 1(c) and 2(a)]. However, as I0 and/or λ0 are
increased, free electrons tend to play a progressively more
important role, until, eventually, in the regime of high I0
and long λ0, these electrons start to dominate low-order
harmonic generation [Figs. 1(b), 1(d), and 2(b)].
To understand these tendencies, it is instructive to

examine the buildup of the density of free electrons within
the field half cycle, controlled by population of the
continuum CðtÞ. For low field intensities and short driver
wavelengths, the electron wave function is strongly local-
ized around the core [Fig. 3(a)], indicating that the electrons
tend to stay near the core most of the time. This correlates
well with the strongly oscillatory behavior of the con-
tinuum population, seen in Figs. 4(c) and 4(d), which
shows that most of the electrons that undergo ionization
within a field half cycle recombine to bound states after this

FIG. 1 (color online). Time-resolved radiation amplitudes abb
(blue) and aff (red) of bound-state and free electrons (a),(b) and
their spectra (c),(d) for a laser driver (purple dashed line) with
I0 ¼ 110 TW=cm2, τ0 ¼ 10=ω0, and λ0 ¼ 0.8 (a),(c) and 4.0 μm
(b),(d). Results of calculations using the semiclassical model for
free electrons are given with a green line. (e) The spectra of aff
(green) and abf (blue and purple) calculated using the TDSE for
a laser driver pulse with I0 ¼ 110 TW=cm2, τ0 ¼ 10=ω0, and
λ0 ¼ 0.8 (purple) and 4.0 μm (blue and green).

FIG. 2 (color online). Relative peak spectral intensity of the
third (top box) and fifth (bottom box) harmonics generated by
bound-state (blue) and free (green) electrons calculated as a
function of the driver field intensity for λ0 ¼ 0.8 (a) and
4.0 μm (b).
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field half cycle. Since the continuum population in this
regime is low at all times [Figs. 4(c) and 4(d)], bound-state
electrons dominate the nonlinear response.
For higher field I0 and/or longer λ0, electrons can travel

further away from the core, acquiring, due to the higher
field intensity and longer field cycle, a higher energy within
each field half cycle. In this regime, the electron wave
function is no longer tightly localized around the atomic
core [Fig. 3(b)]. Since a significant fraction of electrons
undergoing ionization does not recombine to bound states,
the continuum population builds up in a stepwise fashion
after each field half cycle, giving rise to much higher
densities of free electrons in the wake of the driver pulse
[Figs. 4(b) and 5(a)]. The steps in the continuum population
synchronized with field half cycle translate into odd
harmonics of the driver in the spectral domain [21,22].
The intensity of these harmonics is seen to be much higher
than the intensity of harmonics due to bound-state electrons
[Figs. 1(b) and 1(d)].
The finding that free-state electrons dominate harmonic

generation in the regime of high field intensities and
long carrier wavelengths suggests that some of the key
properties of optical nonlinearity in this regime can be
understood in terms of an appropriate semiclassical model.
The length-gauge picture is instrumental in addressing this
question as the canonical momentum in this gauge is
equal to the kinematic momentum ~p and the current
density does not involve the vector potential and is related
to ~p in a straightforward way: jzðtÞ¼ðd=dtÞ½ðdzðtÞ�¼
ðeℏ=meÞ

R
V Imðψ�ð∂=∂zÞψÞd~r¼ðe=meÞ

R
VRefψ�p̂zψgd~r¼

jbbðtÞþjffðtÞþjbfðtÞ. As a semiclassical analog of the jff
term in this expression, we examine the plasma current
with the frequency-domain Fourier amplitude jplðωÞ ¼
−ði=ωÞðe2=meÞF̂fEðtÞneðtÞg, where e is the electron
charge, me is the electron mass, and F̂ stands for the
Fourier transform. The density of free electrons neðtÞ is
found from the equation ∂neðtÞ=∂t ¼ WðtÞ½ðn0 − neðtÞ�,
where n0 is the gas density and WðtÞ is the ionization rate,
calculated with the Yudin-Ivanov formula [23].

In the regime of high field intensities, the normalized
density of free electrons neðtÞ=n0 calculated with such an
approach [blue curves in Figs. 4(a) and 4(b)] agrees
remarkably well with the results of TDSE simulations
for the continuum population [green curves in Figs. 4(a)
and 4(b)]. The entire semiclassical plasma current model of
jpl, on the other hand, is seen to correctly reproduce the key
features in the dynamics of the free-electron current density
[blue curves in Figs. 4(a) and 4(b)], providing an accurate
approximation for the spectra of low-order harmonics from
free-state electrons [cf. green and red lines in Fig. 1(d)].
Predictably, in the regime of low driver intensities, the
semiclassical model fails to adequately reproduce TDSE
simulations [Figs. 1(c) and 4(c)]. It can be also clearly seen
from Figs. 4(a)–4(d) that, with λ0 fixed, the accuracy of the
semiclassical approximation increases with growing I0.
Although the IN0 scaling with the field intensity I0 and
the number of photons required for ionization N is not
applicable in the studied range of field intensities, the
continuum population induced by a midinfrared driver is
still a much stronger function of I0 [cf. Figs. 4(b) and 4(d)]
than the continuum population induced by a near-infrared
driver [Figs. 4(a) and 4(c)].
We see from the physical arguments and examples above

that ultrafast ionization dynamics, or, more specifically, the
dynamics of continuum population within the field half
cycle, is the key physical factor that controls the properties
of the nonlinear response of a quantum system as a function
of the carrier wavelength and field intensity of an optical
driver. This factor can be quantified in terms of two
parameters—the electron probability density transferred
to the continuum by a field half cycle, i.e., CðT=2Þ, T
being the field cycle, and the ratio ξ ¼ CðT=2Þ=Cmax of
the continuum population after a field half cycle to the
maximum continuum population Cmax achieved within this

FIG. 3 (color online). The maps of the probability density
jψð~r; t ¼ 0Þj2 for a driver field with I0 ¼ 110 TW=cm2,
τ0 ¼ 10=ω0, and λ0 ¼ 0.8 (a) and 4.0 μm (b). FIG. 4 (color online). Continuum population CðtÞ calculated as

a function of time using the TDSE (green), the density of free
electrons calculated using the Yudin-Ivanov formula (blue), and
the free-electron current density calculated using the TDSE (red)
and the semiclassical model of jpl (blue) for a driver field (dashed
line) with I0 ¼ 110 (a),(b) and 50 TW=cm2 (c),(d), λ0 ¼ 0.8 μm
(a),(c) and λ0 ¼ 4.0 μm (b),(d), τ0 ¼ 10=ω0.
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field half cycle [Fig. 5(a)]. Small values of ξ correspond
to an oscillatory behavior of the continuum population
[Figs. 4(c) and 4(d)], while ξ ≈ 1 implies a stepwise buildup
of CðtÞ [Figs. 4(a) and 4(b)]. The ξ parameter rapidly grows
with the field intensity [see inset in Fig. 5(b)], saturating at
high I0 as the fraction of free-state electrons returning to the
atomic core within the field half cycle becomes vanishingly
small. Below the saturation level [I0 < 120 TW=cm2 in the
inset to Fig. 5(b)], ξ also rapidly grows with λ0 [the inset
in Fig. 5(a)]. Notably, the ξ parameter differs from the
Keldysh parameter γ ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2meIpÞ
p

=ðeEÞ [cf. the solid
and dashed lines in the inset to Fig. 5(b)], which controls
the regime of photoionization.
The CðT=2Þ parameter, as can be seen from the inset

to Fig. 5(a), is a strong function of both I0 and λ0. For
I0 ¼ 110 TW=cm2, CðT=2Þ in the case of a 4.0-μm driver
is 3 times higher than CðT=2Þ induced by a 0.8-μm driver
[green line in the inset to Fig. 5(a)]. These much steeper
steps in the buildup of continuum population in a mid-IR
field [cf. Figs. 4(a) and 4(b)] translate into much more
intense low-order harmonics [cf. Figs. 1(c) and 1(d)].
Using the above semiclassical picture of optical har-

monic generation by free electrons and neglecting the
ionization-induced depletion of the bound-state population,
we represent the solution for the density of free electrons in
jpl as neðtÞ ≈ n0

R
t
−∞ WðθÞdθ. With the driver field treated

as a periodic function of time, we can expand the ionization
rate, following Ref. [24], as a Fourier series WðtÞ≈
W0=2þ

P∞
k¼1Wkðω0Þ cosð2kω0tÞ. Integration over time

in the equation for neðtÞ then yields neðtÞ≈ðn0W0=2ÞtþP∞
k¼1½n0Wk=ð2kω0Þ�sinð2kω0tÞ. In the regime of tunnel-

ing ionization, using WðtÞ ≈ 4ωa½Ea=EðtÞ� exp f−ð2EaÞ=
½3EðtÞ�g, where Ea is the atomic electric field unit and ωa
is the atomic frequency unit, we find Wk ≈ Pðω0=πÞ
expð−3k2=ςÞ, where ς ¼ Ea=E0, E0 is the amplitude of
the driver field, and P ¼ R π=ω0

0 WðtÞdt is the probability of
ionization by the field half cycle, which, in the case
of tunneling ionization, is given by P ¼ R π=ω0

0 WðtÞdt ¼
8

ffiffiffiffiffiffiffiffi
3πς

p ðωa=ω0Þ expð−2ς=3Þ.
The nonlinear polarization responsible for harmonic

generation by bound-state electrons is represented as
PbðtÞ ¼ ε0

P
M
k¼0 χ

ð2kþ1Þ½EðtÞ�2kþ1, where χð2kþ1Þ is the rel-
evant nonlinear-optical susceptibility, with the amplitude

of the ð2kþ 1Þth harmonic given by að2kþ1Þ
bb ∼ ε0χ

ð2kþ1Þ

ω2
0ðE0=2Þ2k. The ratio of the intensities of harmonics gen-

erated by free- and bound-state electrons is then given by

σ¼jað2kþ1Þ
ff =að2kþ1Þ

bb j∝8
ffiffiffiffiffiffiffiffi
3πς

p ðωa=ω3
0Þ½n0e222kexpð−3k2=ς

−2ς=3Þ�=ðmeε0χ
ð2kþ1ÞkE2k

0 Þ. Neglecting the wavelength
dependence of the nonlinear susceptibility χð2kþ1Þ, which is
weak in the case of interest, since the carrier frequency of the
driver ismuch lower than all the electron transition frequencies
in the quantum system, we find σ ∝ ω−3

0 .
An asymptotic ω−3

0 scaling is due to two multiplicative
factors. The first factor is a physically significant ω−2

0

multiplier in the relation between að2kþ1Þ
bb and the relevant

nonlinear susceptibility, whose dependence on ω0 is very
weak because the frequencies of quantum transitions are
much higher than ω0. The second factor is the growth of P,
which in the case of high field intensities scales almost
linearly with the period of the driver, giving rise to an extra
1=ω0 factor. For the set of parameters considered in this
work, TDSE simulations yield the σðω0Þ dependence
[green line in Fig. 5(b)] that always fits in between ω−2

0

(red line) and ω−3
0 [purple line in Fig. 5(b)], thus verifying

our qualitative physical arguments above.
To summarize, we have shown that subcycle ionization

dynamics is the key physical factor that controls the proper-
ties of optical nonlinearity as a function of the carrier
wavelength and intensity of a driving laser field. For high-
intensity low-frequency fields, free-state electrons are shown
to dominate over bound electrons in the overall nonlinear
response of a quantum system. In this regime, the main
properties of the nonlinear response of a quantum system can
be adequately understood in terms of a semiclassical non-
linear electron current modulated by the driver field.
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FIG. 5 (color online). (a) The continuum population as a
function of time calculated within the field half cycle (dashed
line) using the TDSE for λ0 ¼ 0.8 μm (dash-dotted line) and λ0 ¼
4.0 μm (solid line) at I0 ¼ 100 TW=cm2. The inset shows the
ratio η of the continuum population after a field half cycleCðT=2Þ
for given λ0 and I0, normalized to CðT=2Þ for λ0 ¼ 0.8 μm and
the same I0, plotted as a function of λ0 for I0 ¼ 50 (blue line) and
110 TW=cm2 (green line). Also shown is the ξ ratio as a function
of λ0 for I0 ¼ 75 TW=cm2 (orange line). (b) The ratio σ
calculated for k ¼ 1 (third harmonic) as a function of λ0 using
the TDSE (solid green line) versus two asymptotic dependences
corresponding to the ω−2 and ω−3 scaling laws (dashed lines) for
I0 ¼ 110 TW=cm2. The inset shows the Keldysh parameter γ
(dashed lines) and the ratio ξ (solid lines) calculated using the
TDSE as a function of the field intensity for λ0 ¼ 0.8 (green line),
4.0 (orange line), and 10 μm (blue line).
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