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Evidence from the BICEP2 experiment for a significant gravitational-wave background has focused
attention on inflaton potentials VðϕÞ ∝ ϕα with α ¼ 2 (“chaotic” or “m2ϕ2” inflation) or with smaller
values of α, as may arise in axion-monodromy models. Here we show that reheating considerations may
provide additional constraints to these models. The reheating phase preceding the radiation era is modeled
by an effective equation-of-state parameter wre. The canonical reheating scenario is then described by
wre ¼ 0. The simplest α ¼ 2 models are consistent with wre ¼ 0 for values of ns well within the current 1σ
range. Models with α ¼ 1 or α ¼ 2=3 require a more exotic reheating phase, with −1=3 < wre < 0, unless
ns falls above the current 1σ range. Likewise, models with α ¼ 4 require a physically implausible
wre > 1=3, unless ns is close to the lower limit of the 2σ range. For m2ϕ2 inflation and canonical reheating
as a benchmark, we derive a relation log10ðTre=106 GeVÞ≃ 2000ðns − 0.96Þ between the reheat
temperature Tre and the scalar spectral index ns. Thus, if ns is close to its central value, then
Tre ≲ 106 GeV, just above the electroweak scale. If the reheat temperature is higher, as many theorists
may prefer, then the scalar spectral index should be closer to ns ≃ 0.965 (at the pivot scale
k ¼ 0.05 Mpc−1), near the upper limit of the 1σ error range. Improved precision in the measurement
of ns should allow m2ϕ2, axion monodromy, and ϕ4 models to be distinguished, even without precise
measurement of r, and to test the m2ϕ2 expectation of ns ≃ 0.965.

DOI: 10.1103/PhysRevLett.113.041302 PACS numbers: 98.80.Cq

Introduction.—The imprint of inflationary gravitational
waves in the cosmic microwave background polarization
[1] reported by the BICEP2 Collaboration [2] implies, if
confirmed, that the inflaton field ϕ traversed a distance
large compared with the Planck mass during inflation [3,4].
One particularly simple and elegant model for large-field
inflation is “m2ϕ2” inflation [5,6] (derived originally as a
simple example of chaotic inflation [7]), in which the
inflaton potential is simply a quadratic function of ϕ.
Reference [8] recently argued that this is perhaps the
simplest and most elegant model. They then derived a
consistency relation between the scalar spectral index (now
constrained to be ns − 1 ¼ −0.0397� 0.0073 [9]) and the
tensor-to-scalar ratio (roughly r ∼ 0.2 according to Ref. [2])
that can be tested with higher-precision measurements of ns
and, in particular, of r. Another promising candidate large-
field model, axion monodromy, which suggests a potential
V ∝ ϕ [10] or V ∝ ϕ2=3 [11], has also been receiving
considerable attention. We parametrize all of these models
by a power-law potential V ∝ ϕα.
Here we point out that consideration of the process by

which the Universe reheats may provide additional con-
straints to these models [12–16]. After inflation ends, there
must be a period of reheating (see Ref. [17] for a review)
when the energy stored in the inflaton field is converted to a
plasma of relativistic particles after which the standard
radiation-dominated evolution of the early Universe takes
over. Although the physics of reheating is highly uncertain
and unconstrained, there is a simple canonical scenario [18]

whereby the cold gas of inflaton particles that arise from
coherent oscillation of the inflaton field about the minimum
of a quadratic potential decay to relativistic particles. This
scenario implies a reheating era that lasts for a time ∼Γ−1,
where Γ is the inflaton-decay rate, and in which the
effective equation-of-state parameter (in which the energy
density scales with scale factor a as ρ ∝ a−3ð1þwreÞ) is
wre ¼ 0. The radiation-dominated era is then initiated at a
temperature Tre ∼ ðΓMplÞ1=2. Still, there are more compli-
cated possibilities. For example, resonant [19,20] or
tachyonic [21] instabilities can lead to a short preheating
phase of rapid and violent dissipations by exciting inho-
mogeneous modes. After preheating, inhomogeneous
modes of the inflaton or its decay products could become
turbulent [22] and eventually evolve to a state of equilib-
rium. Numerical studies of this thermalization phase
suggest a range of variation 0≲ wre ≲ 0.25 [23]. The
bottom line, though, is that wre > −1=3 is needed to end
inflation, but wre > 1=3 is difficult to conceive since it
requires a potential dominated by high-dimension operators
(higher than ϕ6) near its minimum, unnatural from a
quantum-field-theoretical point of view.
In this Letter, we show that current measurements of ns

seem to favor m2ϕ2 inflation over axion-monodromy
inflation. If ns is within its current 1σ error range, then
axion-monodromy models require an extended phase of
reheating involving exotic physics with wre < 0. Axion
monodromy is consistent with canonical reheating only if
ns is above the current 1σ range. Moreover, if m2ϕ2
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inflation occurred and was followed by canonical reheat-
ing, then ns ¼ 0.96 (its central value) implies a reheat
temperature just above the electroweak scale. If the reheat
temperature was considerably higher, as may be required to
accommodate models that explain the baryon asymmetry,
then m2ϕ2 inflation (with a high reheat temperature)
predicts a value ns ≃ 0.965, at the high end of the currently
allowed 1σ range, and a prediction that may be testable with
future cosmic microwave background (CMB) data and
galaxy surveys. As we will see below, these conclusions are
robust to the current order-unity uncertainty in r.
We start by sketching the cosmic expansion history in

Fig. 1. At early times, the inflaton field ϕ drives the quasi–de
Sitter phase for Nk e-folds of expansion. The comoving
horizon scale decreases as ∼a−1. The reheating phase begins
once the accelerated expansion comes to an end and the
comoving horizon starts to increase. After another Nre
e-folds of expansion, the energy in the inflaton field has
been completely dissipated into a hot plasmawith a reheating
temperature Tre. Beyond that point, the Universe expands
under radiation domination for anotherNRD e-folds, before it
finally makes a transition to matter domination.
It is clear from Fig. 1 that the number of e-folds between

the time that the current comoving horizon scale exited the
horizon during inflation and the end of inflation must be
related to the number of e-folds between the end of inflation
and today if the dependence of ðaHÞ−1 on a during reheating
is known. The expansion history also allows us to trace the
dilution of the energy density in the Universe. To match the
energy density during inflation, as fixed by r, to the energy
density today, a second relation must be satisfied. These two
matching conditions, for scale and for energy density,
respectively, underly the arguments that follow.
Quantitative analysis.—We consider power-law

potentials

VðϕÞ ¼ 1

2
m4−αϕα; ð1Þ

for the inflaton, with power-law index α and mass param-
eter m. From the attractor evolution of the inflaton field
3H _ϕþ V;ϕ ≃ 0, one can determine the number

N ¼
Z

ϕend

ϕ

Hdϕ
_ϕ

≃ ϕ2 − ϕ2
end

2αM2
pl

≃ ϕ2

2αM2
pl

ð2Þ

of e-folds from the time that the field value is ϕ until the
end of inflation. Note that the field value at the end of
inflation ϕend is small compared to that during slow roll.
The conventional slow-roll parameters are then given by

ϵ ¼ α=ð4NÞ and η ¼ ðα − 1Þ=ð2NÞ: ð3Þ

For power-law potentials, the scalar spectral tilt ns − 1 and
the tensor-to-scalar ratio r are inversely proportional to the
number of e-folds,

ns − 1 ¼ −ð2þ αÞ=ð2NÞ; r ¼ 4α=N: ð4Þ

Simultaneous measurements of ns − 1 and r with high
precision, in principle, pin down both N and α. However,
given the current uncertainty in r, we treat α as a model
input and use ns − 1 to infer both N and r. As we shall see,
the precise value of r does not affect our results.
In cosmology we observe perturbation modes on

scales that are comparable to that of the horizon. For
example, the pivot scale at which Planck determines ns lies
at k ¼ 0.05 Mpc−1. The comoving Hubble scale akHk ¼ k
when this mode exited the horizon can be related to that of
the present time:

k
a0H0

¼ ak
aend

aend
are

are
aeq

aeqHeq

a0H0

Hk

Heq
: ð5Þ

Here quantities with subscript k are evaluated at the time of
horizon exit. Similar subscripts refer to other epochs, includ-
ing the end of inflation (end), reheating (re), radiaton-matter
equality (eq), and the present time (0). Using eNk ¼ aend=ak,
eNre ¼ are=aend, and eN RD ¼ aeq=are, we obtain a constraint
on the total amount of expansion [24]:

ln
k

a0H0

¼ −Nk − Nre − NRD þ ln
aeqHeq

a0H0

þ ln
Hk

Heq
: ð6Þ

The Hubble parameter during inflation is given by
Hk ¼ πMplðrAsÞ1=2=

ffiffiffi
2

p
, with the primordial scalar ampli-

tude lnð1010AsÞ ¼ 3.089þ0.024
−0.027 from Planck [9]. For a given

power-law index α,Nk and r are determined from ns − 1, and
hence lnHk is known.
In addition to Eq. (6), a second relation between the

various e-folds of expansion can be derived by tracking
the postinflationary evolution of the energy density and
temperature. The inflaton field at the end of inflation
has a value ϕend ¼ ðα2M2

pl=2ϵ0Þ1=2 under the estimate that

FIG. 1. The evolution of the comoving Hubble scale 1=aH. The
reheating phase connects the inflationary phase and the radiation
era. Compared to instantaneous reheating (thick dotted curve), a
reheating equation-of-state parameter w re < 1=3 implies more
postinflationary e-folds of expansion. Fewer postinflationary
e-folds requires wre > 1=3 (thin dotted curve).
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inflation terminates at ϵ ¼ ϵ0 ≃ 1, while its value during
inflation satisfies Nk ¼ ϕ2

k=ð2αM2
plÞ. Therefore, the final

stage of the inflation phase has potential energy V end ¼
Vkðϕend=ϕkÞα, where Vk ¼ 3M2

plH
2
k ¼ ð3π2=2ÞM4

plrAs.
The energy density is ρend ¼ ð1þ λÞVend, with the ratio
λ ¼ ϵ0=ð3 − ϵ0Þ of kinetic energy to potential energy.
The duration,

Nre ¼ ½3ð1þ wreÞ�−1 ln ðρend=ρreÞ; ð7Þ

of reheating determines the dilution of the energy density.
Here for simplicity we assume wre is a constant. The final
energy density determines the reheating temperature
through ρre ¼ ðπ2=30ÞgreT4

re, with gre being the effective
number of relativistic species upon thermalization. The
subsequent expansion is mainly driven by hot radiation,
except for very recently nonrelativistic matter and dark
energy. Although it remains a possiblity before big bang
nucleosynthesis at z > 109, for simplicity we assume that
no immense entropy production takes place after Tre. Under
this assumption, the reheating entropy is preserved in the
CMB and neutrino background today, which leads to the
relation

gs;reT3
re ¼

�
a0
are

�
3
�
2T3

0 þ 6 ×
7

8
T3
ν0

�
; ð8Þ

with the present CMB temperature T0 ¼ 2.725 K, the
neutrino temperature Tν0 ¼ ð4=11Þ1=3T0, and the effective
number of light species for entropy gs;re at reheating. We
therefore relate the reheating temperature to the present
CMB temperature through

Tre

T0

¼
�

43

11gs;re

�
1=3 a0

aeq

aeq
are

: ð9Þ

Combining Eq. (7), Eq. (9), and other relations lead to a
second equation relating the various e-folds,

3ð1þ wreÞ
4

Nre ¼
1

4
ln

30

greπ2
þ 1

4
ln
ρend
T4
0

þ 1

3
ln
11gs;re
43

þ ln
aeq
a0

− NRD: ð10Þ

We now combine Eq. (6) and Eq. (10) and

Nre ¼
4

1 − 3wre

�
−Nk − ln

k
a0T0

−
1

4
ln

30

greπ2

−
1

3
ln
11gs;re
43

þ 1

4
ln
π2rAs

6
−
α

8
ln

r
16ϵ0

−
lnð1þ λÞ

4

�
:

ð11Þ
The required duration NRD of radiation domination and
the reheating temperature Tre can then be obtained. We
clarify that in Eq. (11) we compute the required value of

r ¼ −8αðns − 1Þ=ð2þ αÞ for given α. However, the results
are essentially unchanged if we simply set r≃ 0.2.
It is worth noting that Eq. (11) has only logarithmic

dependence on ϵ0, gre, and gs;re, so it suffices to take fiducial
values ϵ0 ¼ 1 and gre ¼ gs;re ¼ 100. The expression is not
affected by the precise values of r and As, as the
dependence on these quantities is only logarithmic.
Nevertheless, the expression depends linearly on ns − 1
through Nk, and is sensitive to wre.
Numerical results.—In Fig. 2, we apply the results above

to compute Nre and Tre as functions of ns − 1. We study
potentials with power-law indexes α ¼ 2=3; 1; 2; 4.
Moreover, we focus on effective reheating equation-of-
state parameters wre ≥ −1=3 (as required if inflation has
ended). As discussed above, a matterlike wre ¼ 0 is favored
for canonical reheating, but wre > 1=3 is disfavored from
model building. Still, for illustration, we will show results
even for w > 1=3.
Our results indicate that the quadratic model α ¼ 2

implies a prolonged reheating epoch for the central value
ns ≃ 0.96 and canonical reheating (wre ¼ 0). A number
Nre ≃ 30 of e-folds is required in this case, and
Tre ≃ 106 GeV. A scalar tilt bluer than that, though,
requires smaller Nre and allows for higher reheating
temperature. For m2ϕ2 inflation and canonical reheating,
we approximate the numerical results by a relation
log10ðTre=106 GeVÞ≃ 2000ðns − 0.96Þ between the
reheat temperature Tre and the scalar spectral index ns.
If a reheat temperature considerably above the electroweak
scale is desired, then ns will have to be larger than its
central value. For example, if reheating was nearly instan-
taneous and set Tre ≃ 1016 GeV, as may be required by
grand-unification-scale baryogenesis models, then m2ϕ2

inflation with canonical reheating requires ns ≃ 0.965.
(Note here that this ns corresponds to the pivot scale k ¼
0.05 Mpc−1 used by Planck. The value inferred for ns
increases to roughly ns ≃ 0.967 for the WMAP pivot
scale k ¼ 0.002 Mpc−1.)
For models with smaller power-law indexes (e.g.,

α ¼ 2=3; 1), canonical reheating is too efficient in diluting
the energy density if ns falls within its 1σ error range. A
reheat temperature above even the BBN temperature
requires wre < 0. Thus, unless ns turns out to be above
the current 1σ upper limit, axion-monodromy models
require some exotic mechanism of reheating, beyond that
in the canonical scenario. On the other hand, models with
larger power-law indexes (e.g., α ¼ 3; 4) require wre > 1=3
(dilution of energy density faster than that that occurs with
the radiation-dominated phase) and thus also pose a
challenge for reheating models, unless ns is near the lower
limit of the current 2σ range. Our results also indicate that
instantaneous reheating is disfavored by current measure-
ments except for α ¼ 2–3. Together, these arguments (and
the results shown in Fig. 2) tend to favor the simplest m2ϕ2

models over other power-law models.
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Recently, Ref. [8] proposed that future measurements of
ns − 1 and r with high precision will serve as a nontrivial
consistency check of the potential shape. Their method of
determining the power-law index α does not rely on good
knowledge of the inflationary e-folds Nk, and is indepen-
dent of the reheating physics. Here our test of the potential
shape is complementary to theirs in the sense that it only
requires precise determination of ns − 1, and not of r.
Conclusions.—The recent BICEP2 measurement of a

large tensor-to-scalar ratio r hints, if confirmed, at large-
field power-law inflaton potentials. By matching the end
of the inflationary epoch to the beginning of the
radiation-dominated phase we can, with improving meas-
urement of the scalar tilt, begin to make quantitative
inferences about the physics of reheating. Our analysis

suggests that of the power-law inflationary models, those
with α ∼ 2, which includes the m2ϕ2 model, are most
compatible with the simplest canonical reheating sce-
nario. Axion-monodromy models (with power-law
indexes α ¼ 1 or α ¼ 2=3) require something more exotic
in the way of reheating physics, unless ns falls above its
current 1σ range. Models with α ¼ 4, on the other hand,
are also disfavored for the 1σ range for ns. While the
statistical significance is not yet conclusive, it is in-
triguing that the current data do seem to favor a simple
quadratic inflaton potential if a simple reheating scenario
is assumed. Future more precise measurements of ns
should help make these arguments sharper.
Although we have focused on power-law potentials, the

test we propose can, in principle, be applied to other

FIG. 2 (color online). We plot Nre (upper panels) and Tre (lower panels) as determined from Eq. (11) and Eq. (7), respectively. Results
for power-law indexes α ¼ 2=3; 1; 2; 4 are each shown separately. Different effective equation-of-state parameters for reheating are
considered in each case: wre ¼ −1=3 (red dashed curve), w re ¼ 0 (blue solid curve), wre ¼ 1=6 (orange dash-dotted curve), and
wre ¼ 2=3 (green long-dashed curve). All curves intersect at the point where reheating occurs instantaneously. The width of each curve
corresponds to a variation of the termination condition 0.1 ≲ ϵ0 ≲ 1 and also roughly the uncertainty in r. The light purple regions are
below the electroweak scale TEW ∼ 100 GeV. The dark purple regions, below 10 MeV, would ruin the predictions of big bang
nucleosynthesis. Temperatures above the intersection point are unphysical as they correspond to Nre < 0. The light yellow band
indicates the 1σ range ns − 1 ¼ −0.0397� 0.0073 from Planck [9], and the dark yellow band assumes a projected uncertainty of 10−3

[8] for ns − 1, as expected from future experiments (assuming the central value remains unchanged).
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potentials, provided that r≃ 0.2 already fixes the energy
density during slow roll.
We have presented a definitive relation between Tre and

ns, if inflation does indeed occur via a quadratic potential
and is then followed by canonical reheating. Similar
relations for wre ≠ 0 can be readoff from Fig. 2. If,
moreover, the reheat temperature is considerably above
the electroweak scale, then the central value of ns should,
with more precise measurements, veer upward in value,
close to ns ¼ 0.965 as the reheat temperature approaches
the grand-unification scale. Fortunately, a precision of
∼10−3 in the value of ns should eventually be achieved
with future experiments such as EUCLID [25] and PRISM
[26], and with cosmic 21-cm surveys [27,28]. In case high
precision in ns cannot be achieved soon, one can instead
use an r measured to a similar level of precision for the
same test.
Finally, laser interferometry experiments [29] are pro-

posed to detect the inflationary gravitational-wave spec-
trum on solar-system scales, some 40 e-folds below the
CMB scales [30]. These gravitational waves reenter the
horizon during reheating if Tre < 104 GeV and will thus
also probe the physics of reheating [31].
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