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Parametric ladder climbing and the quantum saturation of the threshold for the classical parametric
autoresonance due to the zero point fluctuations at low temperatures are discussed. The probability for
capture into the chirped parametric resonance is found by solving the Schrödinger equation in the energy
basis and the associated resonant phase-space dynamics is illustrated via the Wigner distribution. The
numerical threshold for capture into the resonance is compared with the classical and quantum theories in
different parameter regimes.
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Parametric resonance is one of the most interesting and
frequently used phenomena in classical and quantum
dynamics. It occurs when the natural frequency of a system
depends on a parameter modulated at twice the natural
system’s frequency [1–7]. In the well studied stationary
case, the modulation frequency is constant. However, in
nonlinear systems the stationary parametric amplification
is restricted to small amplitudes, since at larger amplitudes
the resonance is destroyed due to the nonlinear frequency
shift [1]. A robust method to overcome this limitation is to
slowly vary the modulation frequency so that the resonance
condition is preserved despite the increase of the amplitude
of oscillations. This phenomenon is called parametric auto-
resonance (PAR). The PAR was studied in such classical
oscillatory systems as the anharmonic oscillator [8,9],
Faraday waves [10,11], and plasmas [12]. But, what are
the quantum effects in the chirped parametrically driven
system? For example, the classical threshold on the
modulation amplitude for transition to PAR becomes
infinite when the initial amplitude of the oscillator [12]
goes to zero. Can quantum fluctuations modify this result?
More generally, what is the quantum-classical correspon-
dence in the system? Similar questions were addressed
recently in the direct autoresonance (AR) problem, where
instead of parametric modulations, a chirped external
driving force was applied [13–18] and two important
quantum limits were identified. The first is the saturation
of temperature-dependent classical observables at small
temperatures due to quantum fluctuations [19,20]. In the
second limit, the smooth classical AR dynamics of many
simultaneously coupled energy levels transforms into a
quantum ladder climbing involving successive two-level
Landau-Zener (LZ) transitions [20–24]. This Letter, for the
first time, addresses the quantum limits in application to the
PAR, i.e., parametric ladder climbing (PLC) and the
saturation of the autoresonance threshold due to quantum
fluctuations.
The simplest system exhibiting nonlinear parametric

resonance is the oscillator governed by the Hamiltonian

H ¼ p2

2
þ ð1þ ε cosφÞ x

2

2
þ β

x4

4
ð1Þ

(here all variables and parameters are dimensionless).
The frequency of the modulation is chirped, ω≡ dφ=dt ¼
2þ αt, passing the linear resonance at t ¼ 0. We expand
the wave function of the oscillator, jψi ¼ P

ncnjψni, in
the energy basis jψni of the unmodulated Hamiltonian,
i.e.,Hðε ¼ 0Þjψni ¼ Enjψni and hψkjψni ¼ δk;n. Then, the
dimensionless (ℏ ¼ 1) Schrödinger equation is

i
dcn
dt

¼ Encn þ
ε

2

X

k

ckhψkjx̂2jψni cosφ; ð2Þ

where for β ≪ 1 the approximate energy levels are [25]
En ≈ nþ 1

2
þ 3

8
βðn2 þ nþ 1

2
Þ, n ¼ 0; 1; 2;…. We also

assume weak coupling, ε ≪ 1 , and, consequently, neglect
the nonlinear corrections of order β in the coupling term,
hψkjx̂2jψni ≈ 1

2
½ ffiffiffiffiffiffi

Qn
p

δk;n−2 þ ð2nþ 1Þδk;n þ
ffiffiffiffiffiffiffiffiffiffiffi
Qnþ1

p
δk;nþ2�,

where Qn ¼ nðnþ 1Þ. The resulting equation for cn is

i
dcn
dt

¼ Encn þ
ε

4
½

ffiffiffiffiffiffiffiffiffiffi
Qn−1

p
cn−2 þ ð2nþ 1Þcn

þ ffiffiffiffiffiffiffiffiffiffiffi
Qnþ1

p
cnþ2� cosφ: ð3Þ

We have solved Eq. (3) numerically, subject to ground
state initial conditions cnðt ¼ −10=

ffiffiffi
α

p Þ ¼ δn;0 for two sets
of parameters representing the quantum PLC [Figs. 1(a)
and 1(c)] and the classical PAR [Figs. 1(b) and 1(d)]. In
the first example, fα; β; εg ¼ f10−6; 0.01; 0.04g and 40
energy levels are included in simulations. The energy of
the system versus the slow time τ ¼ ffiffiffi

α
p

t is shown in
Fig. 1(a). One can see that the response of the quantum
anharmonic oscillator to the chirped parametric modulation
involves successive transitions between even energy levels,
i.e., PLC. We define the anharmonicity parameter
P2 ¼ 3β=4

ffiffiffi
α

p
(P2 ¼ 10 in this example) and observe that

n → nþ 2 transitions occur at times τn ¼ 4nP2, in agree-
ment with the theory below (dashed black line). To our
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knowledge, such a ladder climbing was not observed
previously in the chirped parametric oscillator.
The second example [Figs. 1(b) and 1(d)] uses the same

initial conditions, but fα; β; εg ¼ f10−4; 10−3; 0.04g and
250 levels. Here, P2 ¼ 0.075 corresponds to the classical
limit [20,21], where the dynamics involves many levels and
the energy grows as expected in the classical PAR [8,12].
We compare this example with the classical simulations,
i.e., solve

d2x=dt2 þ ð1þ ε cosφÞxþ βx3 ¼ 0 ð4Þ
with the same parameters. The unique characteristic
of the classical parametric resonance is the unstable fixed
point at zero energy [1]. Therefore, the chirped excitation
in the classical case must involve nonzero initial
conditions, e.g., a finite energy with random phases, as
in Ref. [12], or a thermal distribution of initial conditions,
i.e., fðx0; u0Þ ¼ ð2πTÞ−1 exp ½−ðx20 þ u20Þ=ð2TÞ�, where
u ¼ dx=dt. The latter choice is more suitable for studying
the classical-quantum correspondence. We use T ¼ 0.5
associated with the energy of the quantum mechanical
ground state of the unmodulated linearized system. The
classical averaged energy over 1000 realizations is plotted
in green in Fig. 1(b) showing a good agreement with the
quantum simulations. The deviation at large times is due to
higher order corrections of the energy levels not included in
Eq. (3). This was checked by solving the exact Schrödinger
equation for Hamiltonian (1) in the harmonic oscillator

basis, which gave an excellent agreement for the energy
with the classical results. However, the capture probability
(the main observable in the problem) is established at
weakly nonlinear times (τ < 10), where the approximate
nonlinear model (3) yields greater than 99% accuracy. The
fact that the classical results can be reconstructed by
solving the quantum equations implies that the correspon-
dence principle is satisfied in the limit of small anharmo-
nicity (β ≪ 1), where many energy levels are coupled
simultaneously.
For further illustration, we have calculated the phase-

space Wigner distribution [26] in both examples above and
show the snapshots at intermediated times in Figs. 1(c) and
1(d). In the first example (PLC), the Wigner distribution
at τ ¼ 100 exhibits structure similar to the n ¼ 8 level of
the quantum ladder, as expected from the energy levels
occupation [see Fig. 1(a)]. The deviation from the azimu-
thally symmetric pure n ¼ 8 state is due to the interference
with the 15% occupation of the ground and neighboring
states [see the inset in Fig. 1(a)]. In the PAR example at
τ ¼ 10 in Fig. 1(d), the most populated parts of the phase
space are two symmetrically separated resonant phase-
space regions of the parametric oscillator, while the
interference patterns are seen in the nonresonant regions
of phase space. The splitting of the trapped area in phase
space into two is explained as a pitchfork bifurcation [9].
One of the important observables of the parametrically

chirped oscillator is the probability of capture into reso-
nance. One can define this probability quantum mechan-
ically as the total occupation of resonant levels after the
sweeping of the modulation frequency through the linear
resonance, or, classically, as the fraction of the initial
conditions leading to the phase-locked solution. In the
direct AR scenario for a given temperature, the capture
probability is a smoothed step function of the driving
amplitude ε [27]. The threshold for capture into resonance
in this case was defined as the driving parameter εcr
yielding 50% capture probability, i.e., εcr ¼ εðP ¼ 0.5Þ,
while the transition width Δε was the inverse slope of PðεÞ
at ε ¼ εcr. εcr is temperature independent, while Δε scales
as

ffiffiffiffi
T

p
[20,27]. Chirped Josephson circuit experiments

revealed that at low temperatures, the AR threshold width
saturates to a finite value, associated with the ground state
of the unperturbed oscillator due to zero point quantum
fluctuations [19,20]. This saturation was included in the
classical AR theory by introducing an effective temperature
T→Teff ¼ðℏω0=2kBÞcothðℏω0=2kBTÞ, characterizing the
thermal state in the Wigner phase-space representation
[20]. In contrast to the direct AR, the low temperature
behavior in the PAR has not been studied previously and
is discussed next. Numerical simulations of Eqs. (3) show a
typical S-shape dependence PðεÞ, as in the inset of Fig. 2.
Therefore, we define the threshold εcr for the PAR as
εcr ¼ εðP ¼ 0.5Þ. A classical theory of the PAR was
developed in a plasma application, showing that the critical
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FIG. 1 (color online). The energy of the chirped parametric
oscillator in the quantum PLC (a) and the classical PAR
(b) regimes versus the slow time τ. In (b), the Schrödinger
simulation (lower red line) is compared to the classical solution
(upper green line). The inserts are snapshots of the quantum state
in the energy basis at given times. The corresponding Wigner
distributions are shown in (c) and (d).
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driving amplitude scales logarithmically with the initial
action S0 of the oscillator, εcr ∼ − ln S0 [12]. Therefore, we
expect a similar scaling with the initial temperature in
our case

εPARcr ðTÞ ¼ a − b lnT: ð5Þ

At the same time, we find that the width Δε of the PAR
transition is temperature independent. This result differs
significantly from the direct AR, where εARcr is temperature
independent, while Δε ∼

ffiffiffiffi
T

p
[20]. We verify scaling

[Eq. (5)] in numerical simulations of the classical equation
of motion [Eq. (4)] subject to random, thermally distributed
initial condition [28]. The results are shown in Fig. 2 (blue
triangles) for α ¼ 0.0001, β ¼ 0.001. The logarithmic
scaling is seen in the semilog figure, while the best-fitted
theoretical parameters in this case are a ¼ 0.021 7 and
b ¼ 0.003 3. Note that this classical scaling predicts an
infinitely large driving amplitude for capture into PAR in
the limit of T → 0. This singularity is removed if quantum
fluctuations are taken into account. To illustrate this, we
solve the Schrödinger equation (3) associated with
Hamiltonian (1) using the parameters of the aforemen-
tioned classical simulations. The anharmonicity here is
small, P2 ¼ 0.075 ≪ 1, so many levels are coupled simul-
taneously and the dynamics is classical, as illustrated in the
inset of Fig. 1(b). The numerical quantum results for εcrðTÞ
are presented by red squares in Fig. 2, showing a good
agreement with the classical simulations for temperatures
T > 0.5, but exhibiting saturation of the threshold at low
temperatures. To include this new effect in the theory, we
replace T → Teff ¼ 1

2
coth ð1=TÞ in the classical expression

for the threshold (5), i.e.,

εPARcr ðTÞ ¼ a − b lnTeff : ð6Þ

This prediction with the coefficients a; b mentioned pre-
viously is shown by the solid line in Fig. 2 and agrees with
the quantum numerical results at all temperatures. The
replacement T → Teff can be explained via the Wigner
phase-space representation. Indeed, the Wigner function of
the thermal state of a linearized oscillator is Wðx0; p0Þ ¼
ð2πTeffÞ−1 exp ½−ðx20 þ p2

0Þ=ð2TeffÞ�, while the quantum
Liouville equation coincides with the classical Liouville
equation in the limit P2 → 0. Thus, generally, quantum
fluctuations in systems exhibiting classical dynamics are
taken into account by replacing T → Teff in the classical
theory. Physically, the quantum uncertainty principle
imposes a limit on the minimal area of the ground state
(at T ¼ 0) in phase space, while, classically, it becomes
infinitesimally small. As a result, a quantum mechanical
upper limit on εPARcr is imposed, corresponding to the
quantum ground state at T → 0 (Teff ¼ 0.5). This com-
pletes our discussion of the quantum saturation of the
classical PAR at low temperatures. The second quantum
limit, where only a few levels are coupled simultaneously
and the dynamics becomes that of PLC is discussed next.
For studying the transition between the classical PAR

and the quantum PLC regimes, we transform to the rotating
frame as follows. First, we define Cn ¼ cneiEnt, and rewrite
Eq. (3) in the form

i
dCn

dt
≈
ε

8
ð ffiffiffiffiffiffiffiffiffiffiffi

Qnþ1

p
Cnþ2e−iðωn;nþ2t−φÞ

þ
ffiffiffiffiffiffiffiffiffiffi
Qn−1

p
Cn−2eiðωn−2;nt−φÞÞ; ð7Þ

where ωn;nþ2 ¼ Enþ2 − En ¼ 2–3βð2nþ 3Þ=4 and we
neglect nonresonant terms (rotating wave approximation).
Next, we introduce Bn ¼ Cn expð−i

R
~ΓndtÞ, where ~Γn ¼

3
8
βQn − 1

2
nαt and τ ¼ ffiffiffi

α
p

t. Then, Eq. (7) yields

i
dBn

dτ
¼ ΓnBn þ P1ð

ffiffiffiffiffiffiffiffiffiffiffi
Qnþ1

p
Bnþ2 þ

ffiffiffiffiffiffiffiffiffiffi
Qn−1

p
Bn−2Þ; ð8Þ

where Γn¼ ~Γn=
ffiffiffi
α

p ¼ n=2½P2ðnþ1Þ− τ� and P1 ¼ ε=8
ffiffiffi
α

p
,

P2 ¼ 3β=4
ffiffiffi
α

p
. We have solved the slow Eqs. (8) numeri-

cally, subject to the ground state initial conditions,
Bnðτ ¼ −10Þ ¼ δn;0, and calculated the resonant capture
probability P ðP1Þ for different values of the anharmonicity
parameter P2. The numerics of these slow equations is less
time consuming, still yielding a good agreement with the
solutions of the exact equations (7) (not shown). Similar to
the definition of εcr, we define the threshold modulation
parameter Pcr

1 ¼ P1 ðP ¼ 0.5Þ and show Pcr
1 in Fig. 3 for

different values of the anharmonicity P2 ∈ ½0.0035; 7.1�
(green circles), covering both the classical PAR and the
quantum PLC regimes. We also calculate the corresponding
classical threshold for different P2 by solving the classical
equations (4) subject to the initial “ground state” temper-
ature T ¼ 0.5. The resulting Pcr

1;class ðP2Þ is shown in Fig. 3
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FIG. 2 (color online). The threshold for PAR versus temper-
ature: the classical simulations (blue upward triangle), the
theoretical scaling [Eq. (5)] (dashed line), the Schrödinger
simulations (red square) showing quantum saturation, and the
generalized theory [Eq. (6)] (solid line). Inset: the capture
probability PðεÞ at T ¼ 0.1 in the quantum simulations.
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(blue squares) and agrees well with the quantum calcu-
lations in the classical regime, P2 ≪ ðP1 þ 1Þ=4
(see below).
Next, we seek expressions for Pcr

1 ðP2Þ in both the
quantum PLC and the classical PAR regimes. In PLC
regime, we assume a sufficiently large anharmonicity,
such that only two levels are efficiently coupled as the
modulation frequency passes the resonance ω ≈ ωn;nþ2. In
this case, the dynamics is that of successive n → nþ 2
LZ transitions [23], where the avoided resonant crossing
condition occurs when the diagonal terms of the two
coupled levels are equal. Therefore, the time of the nth
parametric LZ transition is derived by equating the diago-
nal terms in Eq. (8), i.e., Γn ¼ Γnþ2. By solving for τ, one
finds that the time of the n → nþ 2 transition is
τn ¼ 2nP2. Therefore, the time interval between successive
transitions in PLC limit is Δτ ¼ τnþ2 − τn ¼ 4P2, in
agreement with the example in Fig. 1(a) where P2 ¼ 10,
so Δτ ¼ 40. The typical time of the 0 → 2 LZ transition in
Eq. (8) in the adiabatic limit is ΔτLZ ¼ P1 and unity in
the nonadiabatic limit [29]. Therefore, the condition for
well separated successive LZ transitions (i.e., PLC),
Δτ ≫ ΔτLZ, yields P2 ≫ 1

4
ðP1 þ 1Þ. In this limit, the

probability of each n → nþ 2 transition is given by the
LZ formula [23] Pn→nþ2 ¼ 1 − expð−2πP2

1Qnþ1Þ and
the total probability for capture into PLC starting from
the ground state is Ptotal ¼

Q∞
n¼0 Pn→nþ2. Solving Ptotal ¼

0.5 for P1 yields the threshold for capture into PLC,
PPLC
1;cr ¼ 0.237, where only two first terms in the product

are needed for less than 1% accuracy. This prediction is
shown in Fig. 3 by a dashed red line and agrees well with
the numerical simulations in the quantum PLC regime.
In addition, the theoretical separator P2 ¼ 1

4
ðP1 þ 1Þ

(black solid line) predicts correctly the location of the
transition between the quantum PLC and the classical PAR
regimes.

Finally, in the PAR regime we write x ¼ a cos θ, define
the slow phase mismatch ϕ ¼ 2θ − φ and the rescaled
amplitude A ¼ ffiffiffiffiffiffi

P2

p
a, employ the single resonance

approximation, and average Eq. (4) over the fast phase
of the oscillator. This yields [8]

dA
dτ

¼ 2P1A sinϕ;
dϕ
dτ

¼ A2 − 2τ þ 4P1 cosϕ; ð9Þ

where, as before, P1 ¼ ε=8
ffiffiffi
α

p
, P2 ¼ 3β=4

ffiffiffi
α

p
, τ ¼ ffiffiffi

α
p

t,
and the initial thermal distribution is fðA0Þ ¼
σ−2A0 exp ð−A2

0=2σ
2Þ, σ2 ¼ 0.5P2T. Then, the generalized

expression for the threshold becomes

PPAR
1;cr ðTÞ ¼ κ0 − κ1 lnðP2TeffÞ; ð10Þ

where κ0 ¼ 0.165 and κ1 ¼ 0.41 are obtained by compar-
ing Eqs. (6) and (10). The numerical results in Fig. 3 agree
with this prediction for Teff ¼ 0.5 (red dashed-dotted line)
in the classical P2 ≫ 1

4
ðP1 þ 1Þ regime.

The quantum effects in the chirped parametric anhar-
monic oscillator can be studied in microelectromechanical
systems [30] or in Josephson circuit experiments [22,31].
In the latter case, parameters for the low temperature
PAR limit can be similar to those in Ref. [22], i.e., the
linear frequency ω0=2π ¼ f0;1 ¼ 6 GHz, anharmonicity
βr ¼ 0.001, and chirp rate α=2π ¼ 10 MHz=ns. In such
a system, the dimensionless anharmonicity parameter is
P2 ¼ 0.15 in the classical PAR regime (see Fig. 3). For the
PAR, we suggest modulating the Josephson critical current,
i.e., I0 → I0½1þ ε cosð2ω0t − 0.5αt2Þ� instead of the exter-
nal flux Φext, as used in the direct AR [see Eq. (2) in the
supplemental material of Ref. [22]]. The threshold ampli-
tude [Eq. (10)] of the modulations of I0 in this example for
the initial ground state is εPARcr ¼ 0.014, i.e., 1.4% of I0.
In summary, we have studied the problem of passage

through parametric resonance in a quantum anharmonic
oscillator and identified the quantum counterpart of the
classical PAR, i.e., the quantum PLC. We have developed a
theory of PLC and the PAR for thermal initial conditions
and found the threshold of capture into resonance in both
regimes. We have also studied the transition from PLC to
the classical PAR and illustrated both dynamics by the
Wigner phase-space distribution. In addition, we have
identified the effect of the quantum saturation of the
PAR threshold at small temperatures due to zero-point
fluctuations. The saturation defines the maximum modu-
lation amplitude needed for efficient PAR excitation. These
results pave the way for using PLC and the PAR as robust
control tools in quantum electronic or optical systems in
such applications as quantum communication and comput-
ing. It also seems interesting to extend the study of PLC to
quantum systems of many degrees of freedom, such as
complex molecules and coupled qubits for controlling
different interacting degrees of freedom.
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FIG. 3 (color online). The threshold, Pcr
1 in (P1, P2) parameter

space: Schrödinger simulations (green circle), PLC theory
PPLC
1;cr ¼ 0.237 (dashed red line), the PAR theory [Eq. (10)]

(red dashed dotted line), and the classical simulations (blue
square). Black solid line separates the classical PAR and the
quantum PLC regimes.
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