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The feasibility of obtaining exact analytical results in the realm of QED in the presence of a background
electromagnetic field is almost exclusively limited to a few tractable cases, where the Dirac equation in the
corresponding background field can be solved analytically. This circumstance has restricted, in particular,
the theoretical analysis of QED processes in intense laser fields to within the plane wave approximation
even at those high intensities, achievable experimentally only by tightly focusing the laser energy in space.
Here, within the Wentzel-Kramers-Brillouin approximation, we construct analytically single-particle
electron states in the presence of a background electromagnetic field of general space-time structure in the
realistic assumption that the initial energy of the electron is the largest dynamical energy scale in the
problem. The relatively compact expression of these states opens, in particular, the possibility of
investigating analytically strong-field QED processes in the presence of spatially focused laser beams,
which is of particular relevance in view of the upcoming experimental campaigns in this field.
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The predictions of QED have been confirmed with
outstanding precision in numerous experiments. The
impressive agreement between the theoretical and the
experimental value of the electron (g − 2)-factor is cus-
tomarily quoted as a prominent example [1]. However, the
experimental scrutiny of QED becomes much less thorough
when processes are involved, occurring in the presence of a
strong background electromagnetic field, i.e., of the order
of Fc ¼ m2c3=ℏjej ¼ 1.3 × 1016 V=cm ¼ 4.4 × 1013 G
(here, m and e < 0 are the electron mass and charge,
respectively) [2]. The main reason is that these values
largely exceed the field strengths available in laboratories.
An important exception is represented by the electric field
of highly charged ions (charge number Z ∼ 1=α, with
α ¼ e2=ℏc ≈ 1=137) at the typical QED length λC ¼
ℏ=mc ¼ 3.9 × 10−11 cm [3,4]. Indeed, numerous experi-
ments on processes occurring in the presence of highly
charged ions [5–8] have already successfully confirmed the
predictions of QED. Correspondingly, advanced analytical
methods [9], have been developed to interpret accurate
experimental data beyond the exactly solvable Coulomb
model of the ionic field.
Modern high-power lasers represent an alternative

source of intense electromagnetic fields structurally thor-
oughly different from atomic fields. Although the ampli-
tude F0 of the strongest laser pulse ever produced is about
10−4Fc [10], it can be boosted to an effective strength F�

0 ∼
Fc in the rest frame of ultrarelativistic particles colliding
with the laser beam [11]. This principle has been exploited
at SLAC to perform the so-far unique experimental
campaign on strong-laser field QED [12], employing
a laser with photon energy 1 eV and amplitude F0 ¼
2.7 × 1010 V=cm, and an almost counter-propagating elec-
tron beam with energy of 45 GeV (F�

0 ≈ 0.3Fc). The

relatively large pulse spot area (∼60 μm2) allowed for
the experimental results being well reproduced theoreti-
cally within the plane wave field approximation.
Approximating the laser field as a plane wave allows one

to solve exactly the Dirac equation in the resulting back-
ground electromagnetic field [13]. The corresponding
electron single-particle states (Volkov states) have been
extensively employed to investigate different strong-field
QED processes [14–29] (see also the recent reviews
[30–32]). Correspondingly, particle in cell (PIC) codes
including strong-field QED effects [33–35] in the dynamics
of laser-irradiated plasmas employ expressions of the QED
rates calculated in the plane wave (local-constant-crossed-
field) approximation. However, no analytical calculations
in strong-field QED have been performed so far, which also
include self-consistently the spatial focusing of the laser
beam. This is especially desirable as ultrahigh intensities
are attained nowadays by spatially focusing the laser
energy almost down to the diffraction limit.
In the present Letter, we determine analytically the

electron single-particle states in the presence of a strong
background electromagnetic field of general space-time
structure in the experimentally relevant case of an ultra-
relativistic electron. In the realistic assumption that the
initial energy of the electron is the largest dynamical energy
scale in theproblem,we first determine the classicalworldline
of the electron and then we construct the corresponding
quantum states in the Wentzel-Kramers-Brillouin (WKB) or
eikonal approximation [11,36]. The availability of such
single-particlestatesand, inparticular, their relativelycompact
expression open the possibility of investigating analytically
and in a systematic way strong-field QED processes in the
presence of intense background fields with complex space-
time structure as, e.g., those of tightly focused laser beams.

PRL 113, 040402 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
25 JULY 2014

0031-9007=14=113(4)=040402(5) 040402-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.040402
http://dx.doi.org/10.1103/PhysRevLett.113.040402
http://dx.doi.org/10.1103/PhysRevLett.113.040402
http://dx.doi.org/10.1103/PhysRevLett.113.040402


To date, two methods have been developed to investigate
QED processes in the presence of a virtually arbitrary
background electromagnetic field. However, the first one,
based on the quasiclassical operator technique [37,38],
allows one to obtain results only at the leading order in the
quasiclassical, ultrarelativistic limit and does not contain a
general prescription on how to calculate neither the
amplitude of a generic QED process nor high-order
corrections. The second one, instead, employs the so-called
“trajectory-coherent states” (TCS) [39,40], which are
relativistic electron wave functions localized near the
classical electron’s trajectory. However, the expression of
the TCS is extremely cumbersome and of limited use for
practical calculations.
We first consider the classical problem of an ultra-

relativistic electron moving in a background electromag-
netic field, described by the four-vector potential AμðxÞ in
the Lorentz gauge ∂μAμ ¼ 0 (here and below, units with
c ¼ 1 are employed). We work in the laboratory frame
where the electron initial four-momentum is pμ

0 ¼
ðε0; p0Þ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p20

p
; p0Þ, and we have in mind the case

where the background electromagnetic field represents an
intense, short, and tightly focused laser beam. Thus, we
also assume that the field tensor FμνðxÞ ¼ ∂μAνðxÞ −
∂νAμðxÞ ¼ ðEðxÞ;BðxÞÞ is localized in space and time,
that it has a maximum amplitude F0, and that it is
characterized by a typical angular frequency ω0, such that
the classical nonlinearity parameter ξ0 ¼ jejF0=mω0 [see
[41] for a manifestly covariant and gauge-invariant defi-
nition of the parameter ξ0 (see also [15])] satisfies the
strong inequalities: m ≪ mξ0 ≪ ε0. The above assump-
tions well fit present and near-future experimental
conditions envisaged to test strong-field QED with intense
lasers. In fact, even next generation of 10 PW Ti:sapphire
lasers [42] (central wavelength λ0 ¼ 0.8 μm) are realisti-
cally expected not to exceed a peak intensity of
I0 ∼ 1023 W=cm2, corresponding to F0∼6×1012V=cm¼
2×1010G, ξ0 ∼ 160, and mξ0 ∼ 80 MeV. Such a field
amplitude is effectively boosted to the critical value Fc
in the rest frame of an electron with an energy of
ε0 ≳ 500 MeV, which is about 6 times mξ0. In addition,
electron beams with energies of about 2 GeV have been
already demonstrated experimentally also with laser-
plasma accelerators [43]. Our starting point is the
Lorentz equation: dpμ=ds ¼ ðe=mÞFμνpν, where pμ ¼
ðε; pÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
; pÞ is the electron four-momentum

and s is its proper time. According to the analytical solution
of the Lorentz equation in a plane wave [11], the condition
mξ0 ≪ ε0 in the laboratory frame ensures that the electron
will be only slightly deflected from its initial direction by
the background field in the physically relevant situation
where it is initially counterpropagating with respect to the
laser field. Thus, rather than working with manifestly
covariant equations, it is convenient to introduce the light
cone coordinates ϕ ¼ t − n · x, τ ¼ ðtþ n · xÞ=2, and

x⊥ ¼ x − ðn · xÞn, with n ¼ p0=jp0j, and the quantities
nμ ¼ ð1; nÞ, ~nμ ¼ ð1=2Þð1;−nÞ, and aμj ¼ ð0; ajÞ, with
j ¼ 1; 2 (in this respect, see also [44], where vacuum
QED has been formulated by employing light cone
coordinates in the so-called “infinite-momentum frame”).
The quantities a1 and a2 introduced above are two unit
vectors perpendicular to n and to each other, and such that
a1 × a2 ¼ n. An arbitrary four-vector vμ ¼ ðv0; vÞ can be
expressed as: vμ ¼ vþnμ þ v− ~nμ þ v1a

μ
1 þ v2a

μ
2, where

vþ ¼ ð ~nvÞ ¼ ðv0 þ n · vÞ=2, v− ¼ ðnvÞ ¼ v0 − n · v, and
vj ¼ −ðajvÞ ¼ aj · v (note that a2j ¼ −a2j ¼ −1). In the
original light cone notation [45], the direction nwas chosen
as the “third” one, i.e., n ¼ ð0; 0; 1Þ. However, for the sake
of convenience in the use of the final results, we prefer to
keep n as an arbitrary unit vector.
The on shell condition p2 ¼ m2 implies that p− ¼

ðm2 þ p2⊥Þ=2pþ and, in the physical situation of interest
here, we require that the condition jp⊥j ∼mξ0 ≪ pþ is
satisfied in the laboratory frame, i.e., that the quantity
pþ ≈ ε is the largest dynamical energy scale in the problem.
By parametrizing the electron trajectory via the “time” τ,
the three independent components of the Lorentz equation
can be written in the convenient form

dpþ
dτ

¼ eEn þ
e
2

Fm · p⊥
pþ

; ð1Þ

dp⊥
dτ

¼ eFp − eBn
n × p⊥
pþ

þ e
4

m2 þ p2⊥
p2þ

Fm; ð2Þ

where the light cone components of the field tensor have
been expressed in terms of the electromagnetic field as
F ~n;n¼ ~nμFμνnν¼n ·E¼En, F ~n;j ¼ ~nμFμνaj;ν ¼ aj · Fm=2,
Fn;j ¼ nμFμνaj;ν ¼ aj · Fp, and F1;2 ¼ a1;μFμνa2;ν ¼
−n · B ¼ −Bn, with Fp=m ¼ E⊥ � n × B⊥. The idea now
is to solve Eqs. (1)–(2) iteratively by exploiting the
appearance of different powers of the small quantity
jp⊥j=pþ. We assume that the light cone components of
Fμν have all the same order of magnitude and that the
relative size of each term is determined by the power of the
quantity 1=pþ. If this is not the case, in fact, a careful
analysis is required, as the mentioned hierarchy could be
altered. This is expected to occur more likely in the
idealized case of highly symmetric fields. For example,
for a constant and uniform magnetic field perpendicular to
n, it is Bn ≡ 0 and the term proportional to 1=pþ in Eq. (2)
vanishes, unlike the one proportional to 1=p2þ. We also note
that for a tightly focused Gaussian beam counterpropagat-
ing with respect to the electron, it is jEnj ∼ 0.1jFpj [46,47].
Now, the field components in Eqs. (1)–(2) are calculated

along the electron’s trajectory. Since pμ ¼ pþdxμ=dτ, the
following exact equations for the electron’s “spatial”
coordinates rðτÞ ¼ ðϕðτÞ; x⊥ðτÞÞ as functions of τ can be
derived:
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dϕ
dτ

¼ m2 þ p2⊥
2p2þ

; ð3Þ

d2x⊥
dτ2

¼ e
Fp

pþ
− eEn

p⊥
p2þ

− eBn
n × p⊥
p2þ

þ e
4

m2 þ p2⊥
p3þ

Fm −
e
2
ðFm · p⊥Þ

p⊥
p3þ

: ð4Þ

We set the initial conditions at a given time τ0 ¼ ðt0 þ n ·
x0Þ=2 as rðτ0Þ ¼ r0 ¼ ðϕ0; x0;⊥Þ, with ϕ0 ¼ t0 − n · x0,
and as pþðτ0Þ ¼ p0;þ [recall that, by definition, p⊥ðτ0Þ ¼
p0;⊥ ¼ 0 and that the on shell condition implies that
p−ðτ0Þ ¼ p0;− ¼ m2=2p0;þ]. We also assume that
Aμðτ0; rÞ ¼ 0, with r ¼ ðϕ; x⊥Þ.
By denoting the quantities calculated up to terms

proportional to 1=p0;þ via the upper index (1), we have that

rð1ÞðτÞ ¼
�
ϕ0; x0;⊥ þ e

p0;þ

Z
τ

τ0

dτ0Gpðτ0; r0Þ
�
; ð5Þ

where Gpðτ; r0Þ ¼
R
τ
τ0
dτ0Fpðτ0; r0Þ.

By substituting the expression of rð1ÞðτÞ in Eqs. (1)–(2)
and by integrating them, we obtain that

pð1Þ
þ ðτÞ ¼ p0;þ þ

Z
τ

τ0

dτ0
�
eEnðτ0; r0Þ

þ e2

p0;þ
Gpðτ0; r0Þ ·∇⊥

Z
τ

τ0
dτ″Enðτ″; r0Þ

þ e2

2p0;þ
Fmðτ0; r0Þ · Gpðτ0; r0Þ

�
; ð6Þ

pð1Þ⊥ ðτÞ ¼
Z

τ

τ0

dτ0
�
eFpðτ0; r0Þ

þ e2

p0;þ
Gpðτ0; r0Þ · ∇⊥

Z
τ

τ0
dτ″Fpðτ″; r0Þ

− e2

p0;þ
Bnðτ0; r0Þðn × Gpðτ0; r0ÞÞ

�
; ð7Þ

pð1Þ
− ðτÞ ¼ m2 þ e2G2

pðτ; r0Þ
2p0;þ

: ð8Þ

The condition jpð1Þ⊥ ðτÞj ≪ pð1Þ
þ ðτÞ in the laboratory frame

ensures that our approximated solution is accurate [see
Eqs. (1)–(2)] and it is fulfilled if jeGpðτ; r0Þj ≪ p0;þ. Since
tightly focused laser pulses are usually localized in a space
(time) region of the order of a few laser central wavelengths
(periods), the above condition is equivalent in order of
magnitude to the requirementmξ0 ≪ ε0 in the relevant case
of an electron initially counterpropagating with respect to
the laser beam. In order to highlight the qualitative novel-
ties in the theoretical predictions brought about by the
inclusion of the laser spatial focusing, in Fig. 1, we plot the

momentum pz in units of m as a function of the quantity
ω0t for an electron (initial conditions x0 ¼ ð0; 0; 1.5 μmÞ
and p0 ¼ ð0;−260 MeV; 0Þ at t0 ¼ 0) initially counter-
propagating with respect to a Ti:sapphire, Gaussian,
sin2-pulse beam [46], linearly polarized along the z
direction with duration T ¼ 16 fs, spot radius
w0 ¼ 1.5 μm, and peak intensity I0 ¼ 5.7 × 1022 W=cm2

(ξ0 ¼ 110). The continuous (dashed) line indicates the
results of the numerical integration of the Lorentz equation
neglecting (including) the beam spatial focusing. The
dotted line, on top of the dashed one, corresponds to the
analytical result from Eq. (7) (discrepancies between the
numerical and the analytical results arise at the third
significant digit). The final value of pz in the case of the
Gaussian beam is 1 MeV, whereas it vanishes within the
plane wave approximation (see the inset in Fig. 1), accord-
ing to the Lawson-Woodward theorem (see, e.g., [48]).
Note that the corresponding divergence of 4 mrad is larger
than already demonstrated electron beam divergences (e.g.,
of 0.45 mrad at a beam energy of 245 MeV [49]). In
general, by setting τ → ∞ in Eqs. (6)–(8), the relation
between the final four-momentum pð1Þ;μð∞Þ and the initial
one pμ

0 can be obtained. Another qualitatively new feature
brought about by the laser focusing in the above-mentioned
physical setup is that the quantity pþðτÞ is no more a
constant of motion as in the plane wave case and, indeed,
the correction to the plane wave result depends on the
longitudinal electric field of the laser [see Eq. (6)].
It is interesting to observe that by keeping only the

leading-order term of each component of the four-momen-
tum obtained above (i.e., by approximating pþðτÞ ≈ p0;þ,
p⊥ðτÞ ≈ eGpðτ; r0Þ, and p−ðτÞ ≈ ½m2 þ e2G2

pðτ; r0Þ�=
2p0;þ), the corresponding expression coincides with the
exact four-momentum of an electron in a background plane
wavelike field depending on τ and calculated at the initial
coordinates r0. This is in agreement with the classical result
that an ultrarelativistic particle “sees” an arbitrary back-
ground field in its rest frame as a plane wavelike field at
leading order [11]. Note that, although it might be more
convenient to express the four-momentum obtained above

0 5 10 15

100

50

0

50

100

16.0 16.5 17.0 17.5 18.0 18.5
15

10

5

0

5

FIG. 1. Electron transverse momentum pz in units of the
electron mass as a function of ω0t for numerical values and
details given in the text.
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in terms of the four-potential AμðxÞ as in the plane wave
case, we prefer to employ the physical observable electro-
magnetic field.
We pass now to the quantum case and we consider the

Dirac equation ½γμðiℏ∂μ − eAμÞ −m�ψ ¼ 0, where γμ are
the Dirac matrices and ψðxÞ is the bispinor electron wave
function [2]. Based on the general argument that the
de Broglie length of an ultrarelativistic particle is very
small, we apply the WKB method [36] and look for a
solution of the form ψðxÞ ¼ exp½iSðxÞ=ℏ�φðxÞ, where SðxÞ
turns out to be the classical electron action [50–52]. For an
electron with initial four-momentum pμ

0 and spin quantum

number σ0, the positive-energy wave function ψ ð1Þ
p0;σ0ðτ; rÞ

up to the first order in 1=p0;þ reads (see the Supplemental
Material [53] for a detailed derivation):

ψ ð1Þ
p0;σ0ðτ; rÞ ¼ eiS

ð1Þ
p0
ðτ;rÞ=ℏ

�
1 −

e
2

Z
τ

τ0

dτ0

p0;þ
f∇⊥ · Gpðτ0; rÞ

− iΣ · ½Bðτ0; rÞ − n × Eðτ0; rÞ�g
�
up0;σ0ffiffiffiffiffiffiffi
2ε0

p ; ð9Þ

where

Sð1Þp0
ðτ; rÞ ¼ − p0;þϕ −

m2

2p0;þ
τ

−
Z

τ

τ0

dτ0
�
eA−ðτ0; rÞ þ

e2

2p0;þ
G2

pðτ0; rÞ
�
; ð10Þ

where Σ ¼ −iγ1γ2γ3γ, where up0;σ0 is the usual constant
free bispinor [2], and where a unity quantization volume is
assumed. In the Supplemental Material [53], it is shown
that in the relevant case of a strong (ξ0 ≫ 1), tightly
focused (w0 ≈ λ0), and short (T ∼ λ0) optical (λ0 ∼ 1 μm)
laser field, the only restrictive condition for the validity of

the wave function ψ ð1Þ
p0;σ0ðτ; rÞ is the classical onemξ0 ≪ ε0.

The wave function ψ ð1Þ
p0;σ0ðτ; rÞ reduces to the one obtained

in Ref. [54] in the particular case of a background time-
independent scalar potential (see also Ref. [55]). Also,
ultrarelativistic wave functions for scalar particles [56] and
two-particles scattering amplitudes [57,58] have been
derived in the context of high-energy scattering in QED
in the leading-order eikonal approximation, which corre-
sponds in our notation to neglect terms proportional to
1=p0;þ. However, keeping these terms is essential here,
e.g., to recover the plane wave results. In fact, if the
background field is a plane wave field depending on τ, the
state in Eq. (9) coincides within our approximations with
the corresponding Volkov state [2]. In this respect, we note
that the average spin ℏζ [see the discussion below Eq. (11)
in the Supplemental Material [53]] in a Volkov state
describing an electron initially counterpropagating with
respect to a linearly polarized plane wave never acquires a
component along the magnetic field of the plane wave if it
is initially along the electron momentum [2]. Whereas, by

employing the wave function ψ ð1Þ
p0;σ0ðτ; rÞ, this does occur in

the case of a focused laser field. In the particular setup
mentioned belowEq. (8), the average spin acquires an x com-

ponent ℏζð1Þx ðτ; rÞ ¼ ðeℏ=p0;þÞ
R
τ
τ0
dτ0½Exðτ0; rÞ−Bzðτ0; rÞ�,

which vanishes identically in the corresponding plane wave
case.
The negative-energy electron states ψ ð1Þ

−p0;−σ0ðτ; rÞ can be
obtained via the substitutions pμ

0 → −pμ
0 and σ0 → −σ0 in

Eq. (9) except that in 1=
ffiffiffiffiffiffiffi
2ε0

p
, with the resulting quantity

u−p0;−σ0 being the free negative-energy constant bispinor
[2]. In or out states are obtained by performing the limit
τ0 → ∓∞ in Eq. (9) and in the action Sp0

ðτ; rÞ, with the
quantumnumbersp0 andσ0 corresponding to the asymptotic
four-momentum and spin outside the field at τ0 → ∓∞.
Once the single-particle positive and negative energy,

in and out states ψ ðin=outÞ
�p;�σ ðxÞ in ordinary coordinates have

been determined (the upper index (1) from the single-
particle states has been removed for the sake of notational
simplicity), the matrix element Mf;i of a typical process
as nonlinear Compton scattering can be calculated as
(see, e.g., Eq. (4.1.32) in [59])

Mf;i ¼ −ie
ffiffiffiffiffiffi
2π

ω

r Z
d4xψ̄ ðoutÞ

pf;σfðxÞê�k;λψ ðinÞ
pi;σiðxÞeiðkxÞ: ð11Þ

Here, the quantities pi=f and σi=f characterize the initial/
final electron, whereas the emitted photon has four-momen-
tum kμ ¼ ðω; kÞ and polarization four-vector ðek;λÞμ
ðê�k;λ ¼ γμðe�k;λÞμÞ. A semiquantitative analysis of the matrix
element Mf;i already reveals new features in the focused-
field case with respect to the plane wave one (and also to the
locally constant-crossed field one, which is relevant for PIC
codes). First, unlike that in the plane wave case, we can
introduce here the concept of transverse formation
region(s) of radiation with respect to the laser propagation
direction, analogous to the concept of “impact parameter”
in, e.g., electron-nucleus collision [54]. In the quasiclass-
ical limit, this can be physically understood as, unlike that
in a plane wave, electron trajectories in a focused field
differing only by the initial transverse position contribute in
general with different phases to the radiation process. Now,

Eqs. (9)–(10) show that ψ ðin=outÞ
pi=f;σi=fðxÞ ∼ exp½iSðin=outÞpi=f ðxÞ=ℏ�

upi=f;σi=f , with limt→∓∞S
ðin=outÞ
pi=f ðxÞ ¼ −ðpi=fxÞ. In the qua-

siclassical, ultrarelativistic regime at ξ0 ≫ 1, the matrix
element Mf;i can be evaluated approximately via the
saddle-point method (see, e.g., [32]). For any saddle point

xl characterized by the conditions ΔπμðxlÞ ¼ πðoutÞμf ðxlÞþ
ℏkμ − πðinÞμi ðxlÞ ¼ 0, with πðin=outÞμi=f ðxÞ ¼ −∂μ½Sðin=outÞpi=f ðxÞ�,
one can estimate the transverse formation regions lw,
with w ¼ fx; zg, from the resulting quadratic term in
sðxw − xl;wÞ2 in the exponent as lw ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=j∂Δπw=∂xwj

p
,

where all quantities are calculated at xl. Moreover, contrary
to a plane wave, a focused field can transfer momentum to
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the electron in principle along any direction. The four-
momentum transfer ΔπμfieldðxlÞ at each emission point xl
from the field can be estimated from the relations 0 ¼
ΔπμðxlÞ ¼ pμ

f þ ℏkμ − pμ
i − ΔπμfieldðxlÞ and by employing

the classical solution in Eqs. (6)–(8). Finally, the focusing
of the laser is expected to alter also the electron emission
spectrum. This can be already anticipated by estimating the
“instantaneous” classical cutoff emission frequency
ωc ∼ ε3=m3ρ, where ρ is the curvature radius of the electron
trajectory at the instant of emission [11]. By calculating ρ
from Eqs. (6)–(8), one estimates ωc ∼ ðjejε20=m5Þ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEz þ BxÞ2 þ ðEx − BzÞ2

p
, with the second term inside

the square root vanishing identically in the plane wave case.
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