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We investigate the formation of photonic bound states in the continuum (BICs) in photonic crystal slabs
from an analytical perspective. Unlike the stationary at-Γ BICs which originate from the geometric
symmetry, the tunable off-Γ BICs are due to the weighted destructive via the continuum interference in the
vicinity of accidental symmetry when the majority of the radiation is precanceled. The symmetric
compatible nature of the off-Γ BICs leads to a trapping of light that can be tuned through continuously
varying the wave vector. With the analytical approach, we explain a reported experiment and predict the
existence of a new BIC at an unrevealed symmetry.
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The localization of waves has always been more difficult
to manipulate than their propagation. It is well known that
an electromagnetic wave of a specific frequency can be
trapped by structures such as photonic [1–3] and plasmonic
[4] nanocavities, in which outgoing waves are completely
forbidden. However, it has been demonstrated that perfect
light confinement can still be achieved even with allowed
outgoing waves, because of a particular type of localized
state: a bound state in the continuum (BIC). Historically,
von Neumann and Wigner [5] first proposed that a BIC can
be explicitly constructed in a quantum system when the
wave function exhibits weakly damped oscillations.
Furthermore, the occurrence of BICs was interpreted as
the interference of resonances in direct and via the
continuum channels [6,7]. It is a very general effect that
is important in many areas of physics, including photonics
[8–11], quantum [12–16], aquatic, and acoustic waves
[17,18], etc. Although some artificially designed potentials
cannot be readily realized in an electronic quantum system,
similar phenomena may be more easily implemented
optically under Maxwell’s theory. Recently, BICs have
been demonstrated in photonic crystal (PC) slabs [19], in
which periodic geometry leads to BICs at Γ on photonic
band structures that are analogous to electron band struc-
tures in solids.
In many reported cases, BICs are decoupled from

continuum states because geometric symmetry forbids
coupling to any outgoing wave, i.e., symmetry incom-
patibility that leads to stationary BICs, namely, fixed
BICs at the Γ point. Very recently, another type of BIC
was reported in PC slabs on TM-like bands [20,21] at
some seemingly unremarkable wave vectors without
symmetry incompatibility, giving rise to a tunable trap-
ping of light. This disappearance of leakage was primarily
attributed to the destructive interference among several

leakage channels, but the underlying physics remains
unrevealed.
For a general quantum system, a theory regarding

BICs was developed by Feshbach, Friedrich, and
Wintgen [6,7] many years ago. It describes two inter-
fering resonances caused by the coupling in closed and
open channels. Similar phenomena also occur in a PC
slab system in which several guided mode resonances
interfere. These resonances are coupled to each other
through in-plane Bloch waves (closed channels) or
leaky waves (open channels) and form the BICs.
Recently, we proposed a coupled-wave theory (CWT)
[22–24] for analyzing the guided mode resonance in
two-dimensional PC slabs. The CWT depicts the analo-
gous physics in a photonic system in great detail, as did
Feshbach’s theory for a quantum system. In this Letter,
we present a more comprehensive understanding of
BICs in PC slabs based on the analytical CWT of
PC modes in the continuum.
A tunable BIC has been observed in the structure

illustrated in Fig. 1(a) [20] and we focus on this structure
for consistency. Assuming the TE-TM coupling is
much weaker than their own internal coupling, the TM-
like electromagnetic field is given by ðHx;Hy; EzÞ. For a
macroscopic PC slab, assuming that the area in
the xy plane is infinite, we have HiðzÞ ¼ Hi;0;0þP

m≠0;n≠0Hi;m;nðzÞe−imβ0x−inβ0y, where β0 ¼ 2π=a.
Moreover, within the PC slab (jzj < d), 1=εðrÞ can be
expanded with the Fourier transform: 1=εðrÞ ¼ κaþP

κmne−imβ0x−inβ0y, where κa ¼ fð1=εlÞ þ ð1 − fÞð1=εsnÞ
(f is the filling factor). Outside the PC slab (jzj > d),
1=εðrÞ ¼ 1=εl≜κb. The coupling equations of closed and
open channels can be obtained from Maxwell’s equations,
as follows for the x direction:
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where Δκ≜κb − κa, δðjdjÞ≜δðz − dÞ − δðzþ dÞ and
ðmx; nyÞ follow the same notations as that used in our
previous work [23]. Because of symmetry, the equation for
the y direction can be readily obtained from Eq. (1) by
switching Hx;m;n, Hx;m0;n0 , mx, and m0

x with Hy;m;n, Hy;m0;n0 ,
ny, and n0y, respectively. In the z direction, the transverse
wave condition of the H components yields

X
m0;n0

κm−m0
n−n0 ;

∂
∂z ðmxHx;m0;n0 þ nyHy;m0;n0 Þ ¼ 0: ð2Þ

Because the TM-like modes involve a longitudinal
electric field, two effects influence the coupling strength
between individual channels: the in-plane coupling caused
by the permittivity periodicity and the surface coupling
caused by the discontinuities at dielectric interfaces.
Essentially different from TE-like modes, the δðjdjÞ part
of the operator in Eq. (1) depicts the unique surface
coupling existing in TM-like modes only [26]. The
remainder of the operator represents the conventional
in-plane coupling for both TE and TM-like modes
[26,27]. Equation (1) is analogous to Eq. (1) in
Friedrich’s work for a quantum system that describes
the interference of several closed channels with one or
more open channel(s) [7].

The guided resonance depends on the phase matching
between the guided mode (β) and a given ðm; nÞ order of
the Bloch mode (βmn ¼ mβ0x̂þ nβ0ŷ), with β ¼ jβmnj. At
the Γ2 point, with the phase matching given by β ¼ β0, all
Bloch waves except H0;0 are confined within the slab. In
Fig. 1(c), owing to the symmetry of a square lattice, four
wave vectors V ¼ fRx1; Sx1; Ry1; Sy1g can be treated as
uncoupled closed channels. The coupling between closed
channels can be realized via in-plane waves (throughHm;n),
or via the continuum (through H0;0). Thus we have an
eigenvalue problem,

ðk − k0;mnÞV ¼
� X

m;n;m0;n0
hHi;m;njκm−m0

n−n0 ;
jHi;m0;n0 i

þ
X
m;n

hHi;m;njκm;njHi;0;0i
�
V; ð3Þ

where i ¼ x; y. Using the approach similar to that for TE-
like modes [22], all terms in Eq. (3) can be solved
analytically and the complex frequencies are obtained as
eigenvalues. Moreover, the leaky wave (open channel) can
be calculated in terms of the closed channels,

Hi;0;0 ¼
X
m;n

hGjκm;n

� ∂2

∂z2 − δðjdjÞ ∂
∂z

�
jHi;m;ni; ð4Þ

where G ¼ ½k20 þ δðjdjÞΔκð∂=∂zÞ þ κað∂2=∂z2Þ�−1 is the
Green function.
The radiative wave includes the contributions from

closed channels with different weights and phases
[Fig. 1(a)]. We calculate the band structure (with a wave
truncation order [22] of 10 for convergence) near the Γ2

point where four band-edge modes are identified as TM1–4

in Fig. 2(a). Moreover, Qr of the TM1 mode in the vicinity
of Γ2 is depicted using the CWT [Fig. 2(b)]. Because of the
geometric symmetry, all of the coupling coefficients (κmn)
are symmetric at Γ [Fig. 1(c)], which leads to complete
destructive interference. For TM-like modes, a partial
cancellation occurs between the in-plane and surface
coupling. As shown in Fig. 2(c), the strengths of the
two coupling mechanisms are comparable in amplitude
but opposite in sign, which reduces the overall radiation.
The “perfect symmetry” picture for at-Γ BICs cannot

straightforwardly explain the recently reported tunable
BICs that occur at seemingly unremarkable k points with-
out symmetry incompatibility. From the analytical perspec-
tive of CWT, we found the participation of other orders of Γ
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FIG. 1 (color online). (a) Structure: liquid (εl ¼ 2.11), Si3N4

PC slab (εsn ¼ 4.08), silica cladding (εso ¼ 2.13), and Si sub-
strate. Setting εl ≃ εso ensures mirror-flip symmetry [20]. The
silica and liquid layers are sufficiently thick to be assumed as
infinite. (b) Basic lattice: thickness 2d ¼ 180 nm, periodicity
a ¼ 336 nm, hole diameter 2r ¼ 160 nm. (c),(d),(e) Phase
matching conditions: (c) Γ point; (d) k ¼ 0.25 in the Γ − X
direction; (e) k ¼ ffiffiffi

2
p

=6 in the Γ −M direction. Red arrows
indicate extra degenerate wave vectors. For square lattice, the Γ1,
Γ2, and Γ3 points are defined as wave vectors with lengths of 0,
2π=a, and 2

ffiffiffi
2

p
π=a, respectively [25].
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points may create new symmetry for the formation of
tunable BICs.
For the reported tunable BIC at k≃ 0.25 in the Γ − X

direction [20], the wave vectors of Sx1, Rx2, and Sy2 become
degenerate and create a new phase matching β ¼ 1.25β0
via a triangular symmetry [Fig. 1(d)]. As a result, most of
the energy coupled to the radiative open channel can be
canceled, which forms a Γ − X BIC [Fig. 3(a)]. Figure 3(b)
shows the radiation ability of the six most significant
interfering waves in this case. Among these, Sx1 has the
highest radiation ability while Rx2 and Sy2 are comparable.
Although Ry1 and Sy1 also exhibit considerable contribu-
tions; however, the majority of the corresponding radiation
cancels with each other because of the symmetry with
respect to the x axis.
The entire radiation cancellation is demonstrated by

mixing all of the participating radiative channels via the
mode eigenvectors, as shown in Figs. 3(c) and 3(d). In the x
direction, all of the radiative waves are canceled because of

symmetry. In contrast, no apparent symmetry holds in the y
direction. As expected, the radiation projected onto Sx1 is
rather large. The other large component Rx1 comprises the
projection of Rx2, Sy2, and Rx1, in which Rx2 and Sy2
dominate because the radiation ability of Rx1 is rather low
[Fig. 3(b)]. Therefore, the accidental degenerate wave
vectors Sx1, Rx2, and Sy2 contribute dominant radiation,
and Sx1 is in opposite sign with Rx2 and Sy2 [Fig. 3(d)].
Hence, by incorporating the radiation from all possible
channels, the weighted destructive interference causes the
overall radiation to be suppressed (close to 0) as shown in
Fig. 3(d).
Interestingly, similar accidental symmetry that may lead

to new off-Γ BICs also exists elsewhere. For instance, Rx2,
Sx1, and Sy2 become degenerate at k ¼ ffiffiffi

2
p

=6 in the Γ −M
direction [Fig. 1(e)], forming another triangular symmetry
and a new Γ −M BIC [Fig. 3(e)]. Fig. 3(f) shows the
radiation ability of the five most significant individual
waves: Sx1 and Sy1 exhibit the highest radiation ability, and
the radiation from Rx2 is also remarkably large. As in the
Γ − X case, the majority of radiation from Rx1 and Ry1 is
canceled owing to symmetry [see Fig. 3(g)]. Thus, the
degenerate wave vectors Sx1, Sy1, and Rx2 contribute
dominant radiation.
Choosing the polarizations along the y ¼ x (as x0) and

y ¼ −x (as y0) axes [23] allows for better interpretation of
the weighted destructive interference of the Γ −M BIC
after mixing with the TM2 eigenvectors [Figs. 3(g)
and 3(h)]. As previously stated, the radiation in the x0

direction remains symmetric and cancels out. In the y0

direction, the radiation projected onto Sx1 and Sy1 is
identical and remarkably large, and their sign is opposite
to that of the radiation projected onto Rx2. Hence, the
weighted destructive interference can be achieved owing to
the accidental triangular symmetry, and the overall radia-
tion is suppressed (close to 0).
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FIG. 3 (color online). CWT-calculated Qr (a) TM1 mode near Γ − X BIC (e) TM2 mode near Γ −M BIC. CWT-calculated radiation
ability at the symmetry (defined by the modulus of the diffraction into the open channel of individual wave vectors with normalized
profiles, i.e., ∥hGi;−m;−nHi;m;ni∥, i ¼ x; y) for the (b) Γ − X BIC (f) Γ −M BIC. Radiation profile decomposition within the slab of (c),
(d) TM1 Γ − X BIC in the x and y directions (g),(h) TM2 Γ −M BIC in the x’ (y ¼ x) and y’ (y ¼ −x) directions. The radiation profiles
are calculated by Pm;n

P
m0;n0 hVTM1ð2Þ jGi;−m0;−n0 jHi;m0;n0 i; i ¼ x; y, where VTM1ð2Þ is the eigenvector of the Γ − XðMÞ BIC and Pmn denotes

corresponding projection operators, i.e., jmnihmnj.
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FIG. 2 (color online). (a) Identified TM1–4 modes near the Γ2

point by increasing frequency [25], using both CWT (lines) and
finite-difference time domain (FDTD) (dots). (b) CWT-calculated
quality factorQr of TM1 mode near Γ2. (c) Precancellation within
a closed channel at Γ2. The coupling strength [22] is defined as
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The off-Γ BICs do not necessarily occur at the exact
accidental symmetry point. Unlike the at-Γ BICs, the off-Γ
BICs have different closed-channel weights in their con-
tributions to radiative open channels (determined by κmn),
and hence, a small amount of residual radiation may remain
after cancellation at the exact symmetry point.
Nevertheless, the interference can be continuously adjusted
using the wave vector such that weighted destructive
interference always occurs because of the new symmetry,
giving rise to a tunable trapping of light. As long as the
mirror-flip and inversion symmetry are kept intact [20],
tunable BICs can be stably found.
Furthermore, the locations of off-Γ BICs can be shifted

by changing various parameters, such as the cladding
permittivity εc. As shown in Figs. 4(a) and 4(b), the
locations of the off-Γ BICs shift away from the Γ point
with higher index contrast (i.e., smaller cladding permit-
tivity) and vice versa. When the cladding permittivity
varies, the out-of-plane profiles of the individual channels
change accordingly, modifying the via the continuum
coupling weights, which leads to the location shifts of
the tunable BICs.
It should be emphasized that the surface coupling plays

an important role in the formation of tunable BICs in TM-
like modes. The surface coupling in TM-like modes, unlike
that in TE-like modes, precompensates the majority of the
large leakage caused by the in-plane coupling in TM-like
modes [Fig. 2(c)]. Hence, the sufficiently low radiation
ability of the uncoupled closed channels is a prerequisite
for the formation of tunable BICs. This criterion also
applies for TE-like modes that only possess in-plane
coupling, provided that the overall radiation can be
effectively suppressed by proper design. For the structure
shown in Fig. 1(a), TE-like tunable BICs can hardly be
found, as the uncoupled radiation of TE-like modes is too
large for via the continuum channels to compensate. We
calculate the continuum region for both TE and TM-like
modes as shown in Fig. 5. Band gaps Φ and Ξ appear in
both TE and TM-like bands, validating the interference by
the accidental new phase matchings [Figs. 1(d) and 1(e)].
However, owing to the large radiation ability of the
uncoupled channels, TE-like modes can only demonstrate
stationary BICs at k≃ 0 with symmetry incompatibility.

The tunable BICs ϕ [Fig. 4(a)] and χ [Fig. 4(b)] solely
occur in TM-like modes.
Thus, the formation of tunable BICs is quite clear: the

partial cancellation of the in-plane and the surface coupling
ensures rather low radiation ability of the separate closed
channels. New accidental symmetry induces strong cou-
pling in via the continuum channels (but still far weaker
than the precancellation within single closed channels).
Finally, scanning of the wave vector allows achieving the
weighted destructive interference between the closed and
open channels. The via the continuum coupling also exists
for 1D situations [27]. According to the similar phase
matching criteria for 2D cases, the 1D case should
potentially possess an off-Γ BIC in the vicinity of 0.5 G,
which was reported in [9]. Therefore, both fixed BICs
[8,19] and tunable BICs [9,20,21] are realizable in 1D and
2D structures.
The off-Γ BICs can also be understood as the interband

coupling [28] between the Γ2 and Γ3 bands [25]. With
infinitely thick PC, the coupling between different Γ orders
is forbidden because of orthogonality. However, for PC
with finite thickness, the orthogonality is broken, and
interband coupling is allowed owing to the indirect via
the continuum coupling within near fields. The destructive
interference of the via the continuum coupling induces
BICs, while the constructive interference forms metastable
bands (Fig. 5). Because the mixed metastable modes are not
supported by the PC periodicity, they quickly dissipate or
couple back to the stable bands, rendering their low Qr in
the entire Brillouin zone.
The discussion of BICs in this Letter focuses on the

cancellation of the out-of-plane radiation but neglects the
in-plane loss. For a PC slab with a finite area, energy may
leak at planar boundaries, causing more loss. The in-plane
loss may be negligible for a macroscopic PC slab [19], but
it must be considered in realizing a three-dimensional BIC
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within a smaller area. Thus, the planar permittivity (i.e.,
potential) distribution should be addressed to reduce the
considerable in-plane loss. For photonics, we believe a
damped oscillating planar permittivity envelope is a prom-
ising solution, which corresponds to the initial proposal for
a quantum system [5].
In this Letter, we provided an analytical perspective for

BICs in PC slabs. For separate closed channels, the
compensation of in-plane and surface coupling makes
TM-like modes easier to trap. By tuning the wave vector,
the via the continuum coupling can form weighted destruc-
tive interference through new accidental symmetry.
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