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We propose a setup that is the spin analog of the charge-based quantum RC circuit. We define and
compute the spin capacitance and the spin resistance of the circuit for both ferromagnetic and
antiferromagnetic systems. We find that the antiferromagnetic setup has universal properties, but the
ferromagnetic setup does not. We discuss how to use the proposed setup as a quantum source of spin
excitations, and put forward two possible experimental realizations, using either ultracold atoms in optical
lattices or artificially engineered atomic-spin chains.
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Introduction.—The aim in the field of spintronics in
insulating magnets [1–9] is to use purely magnetic collec-
tive excitations, such as magnons [10] or spinons [11], to
perform logic operations in the absence of charge transport.
Thereby, it is possible to circumvent the problem of excess
Joule heating that occurs due to the scattering of conduction
electrons in more traditional electronic devices, leading to
lower energy dissipation in such spintronic devices [12].
Since this excess heating is a limiting factor in the design
of electronic devices, spintronics in insulating magnets
is considered one of the candidates to become the next
computing paradigm. Furthermore, the fact that the elemen-
tary excitations in ferromagnetic insulators obey bosonic
statistics may offer additional benefits [1].
Several experiments that display the capability to create

and detect pure spin currents in magnetic insulators have
been performed recently. Creation of a magnon current has
been shown to be possible using the spin Hall effect [4], the
spin Seebeck effect [5], as well as laser-controlled local
temperature gradients [13]; detection of magnon currents
has been performed using the inverse spin Hall effect
[4,14]. However, analogously to quantum optics where the
single-photon source is a major element to encode or
manipulate a quantum state [15], or to quantum electronics
where an on-demand electron source has been recently
realized [16–18], a more controllable way of creating
quantum spin excitations may ultimately be desirable.
Besides offering great potential for applications, single-

excitation sources are also fascinating from a more
fundamental point of view. This is illustrated by the
single-electron source, which violates the classical laws
of electricity [19,20]. Furthermore, in the linear response
regime and at low driving frequency, a single-electron
source can be described in terms of a quantum RC circuit
whose charge relaxation resistance has a universal value
in the coherent regime [19,21–27] (this universality is
destroyed when one moves into the incoherent regime
[28]). Motivated by these considerations, we analyze here

a setup that we propose could potentially act as an on-
demand coherent source of magnons or spinons and
compute the equivalent RC parameters of such a circuit
from a microscopic model.
By drawing analogy to the charge-based quantum RC

circuit, we propose that the setup depicted in Fig. 1(a) is
equivalent to a “quantum magnetic RC circuit.” We mean
by this that in the displayed setup MDðωÞ, the excess
magnetization of the magnetic grain or magnetic dot (see
below), is related to the applied magnetic field BDðωÞ by

MDðωÞ
BDðωÞ

¼ CMð1þ iωCMRMÞ: ð1Þ

Here, CM and RM are the magnetic resistance and
capacitance, respectively, of the equivalent RC circuit [see
Fig. 1(b)]. We emphasize that our proposed magnon or
spinon source is not equivalent to a classical spin battery
[29] but operates at the quantum level (i.e., on the level of
individual coherent magnons or spinons).
The excess magnetization of the nonitinerant magnetic

dot is defined asMDðωÞ ¼ gμBNDðωÞ, where NDðωÞ is the
Fourier transform of NDðtÞ which is the time-dependent
excess number of magnetic quasiparticles in the dot.
These quasiparticles are the elementary quantum excita-
tions (magnons or spinons) of the Heisenberg Hamiltonian
which wewill use to describe the dot. We must make a clear
distinction between ferromagnetic (FM) and antiferromag-
netic (AF) systems here. The main difference between the
two lies in the different statistics obeyed by the respective
elementary excitations, whereas the FM magnons obey
bosonic statistics, the AF spinons in contrast behave accor-
ding to fermionic statistics. This leads us to expect very
different behavior between these systems.
Model.—Our setup consists of a magnetic dot or mag-

netic grain that is weakly exchange coupled to a large
magnetic reservoir. Both the magnetic dot and reservoir
are assumed to be nonitinerant magnets, described by a
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Heisenberg Hamiltonian. For concreteness, we will model
our subsystems as 1D spin chains. We characterize the
system by the Hamiltonian H ¼ H0 þHT . Here, H0 ¼
HD þHR describes the isolated subsystems and HT the
weak magnetic exchange interaction between the dot and
reservoir. The Heisenberg Hamiltonian HD that describes
the isolated magnetic dot is given by

HD ¼
X
hiji

Si · JD · Sj þ gμB
X
i

½B0
D þ BDðtÞ� · Si: ð2Þ

JD denotes a diagonal 3 × 3 matrix with diagðJDÞ ¼
JDf1; 1;ΔDg. JD is the magnitude of the exchange inter-
action and ΔD the anisotropy in our model. JD≶0
corresponds, respectively, to the FM and the AF ground
state. B0

D ¼ B0
Dez and BDðtÞ ¼ BDðtÞez are, respectively,

the static- and time-dependent component of the magnetic
field applied to the dot. The Hamiltonian HR that describes
the reservoir is given by Eq. (2) with parameters JR; JR;ΔR,
B0
R, and BRðtÞ ¼ 0. We will use a lowercase si to denote the

ith spin in the reservoir. HT will be defined later.
We can either use the Holstein-Primakoff [10] (for FM

systems) or the Jordan-Wigner [11] (for spin-1=2 AF
systems) transformation to map the spin-ladder operators
on respectively bosonic or fermionic creation or annihila-
tion operators, corresponding to spinless quasiparticles
with magnetic moment gμBez (see Ref. [34]). Regardless
of the statistics of the quasiparticles, we will denote an
annihilation operator in the reservoir (dot) by riðdiÞ.
In thermal equilibrium, the ground state of an isolated

dot contains a fixed number N0 ¼
P

ihd†i dii0 of magnetic
quasiparticles. Here, h…i0 denotes the average with respect
to the Hamiltonian H0 with BDðtÞ ¼ 0. We now define the
excess number of magnetic excitations on the dot
as N̂D ¼ P

id
†
i di − N0.

We will consider magnetic dots whose Hamiltonian can
be diagonalized as HD ¼ P

kðεk − μMÞd†kdk, with εk the
dispersive energy of the excitations and μM the magnetic
equivalent of the chemical potential. The parameters
RM;CM of the quantum RC model are only well defined
if adding and removing a quasiparticle from the dot
involves a finite amount of energy, i.e., if the spectrum
has a gap E�

D that satisfies jE�
Dj ≫ kBT;ℏω; JT (see Fig. 2).

In small magnetic dots of size L, quantization of the wave
vector k in multiples of 2π=L leads to a level splitting
(and hence E�

D; see Fig. 2) of order JDða=LÞ2 for FM dots,
and JDa=L for AF dots (a is the nearest-neighbor distance).
In principle, an anisotropy ΔD > 1 gives rise to a bulk

gap in large AF dots as well. However, the resulting system
is the magnetic equivalent of a Mott insulator, rather than
the equivalent of a band insulator [11]. As a consequence,

the excitations are no longer the dð†Þk ’s of the original
model, and the resulting model does not allow for a
straightforward analysis. The opening of a bulk gap E�

D
by an applied magnetic field requires a staggered field, with
wave vector 2kF ≈ π=a. Since neither mechanism allows us
to create a bulk gap E�

D for large AF dots in a straightfor-
ward manner, we will rather focus on small AF dots with a
finite level splitting due to the quantization of the wave
vector k for AF systems. The magnetic chemical potential
is given by μM ¼ gμBjB0

Dj.
For FM dots, we put μM ¼ 0. There exist two mecha-

nisms that allow for a finite gap even in large FM dots.
First, an anisotropy ΔD > 1 gives rise to a gap Eþ

D ¼
2jJDjSDðΔD − 1Þ [see Fig. 2(b) for the definition of Eþ

D for
FM systems]. Second, application of a magnetic field B0

D
leads to Eþ

D ¼ gμBjB0
Dj.

For FM subsystems, we will assume that the reservoir is
described by the isotropic Heisenberg Hamiltonian, i.e.,
with ΔR ¼ 1. For AF subsystems, we will assume initially
that the reservoir as well as the dot are easy-axis AF
spin-1=2 spin chains, i.e., with ΔRðDÞ ¼ 0. This has the

FIG. 2 (color online). (a) Band structure of the AF system,
assuming a small AF dot with discrete energy levels. Since
the magnetic quasiparticles obey fermionic statistics, all states
above (below) μM are empty (filled) at T ¼ 0. We define
E�
D ¼ εnþ1=n − μM. (b) Band structure of the FM system at finite

T ≪ Eþ
D. The quasiparticles obey bosonic statistics. Here,

Eþ
DðRÞ ¼ E−

DðRÞ denotes the energy of the lowest energy level
in the dot (reservoir).

(a)

(b)

FIG. 1 (color online). (a) Schematic representation of the setup.
The weakly coupled reservoir and dot are both modeled as 1D
chains in this work. Parallel collections of such 1D chains are
realized in bulk materials such as SrCuO2 (Ref. [30]) and
Cs2CoCl4 (Ref. [31]), as well as in ultracold atoms in optical
lattices [32,33]. (b) Equivalent circuit representation of the setup;
see Eq. (1) for the definition of RM and CM.
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advantage that the excitations can be mapped on free
fermions. We will show later how to extend our results
for spin chains with finite anisotropy.
The exchange interaction between dot and reservoir is

given by JTsN · S0, where sN denotes the last spin in the
reservoir, and S0 the first spin in the dot. JT is the smallest
parameter in the problem, and we analyze the effect of HT
using perturbation theory. We show in the Supplemental
Material [34] that the out-of-plane component of the
interaction does not significantly affect our results, so that
we can approximate HT by ĤT ¼ JT ½r†Nd0 þ rNd

†
0�.

By using linear-response theory, we can calculate the
change in magnetization MDðωÞ due to a small time-
dependent change in BDðωÞ. It is given by MDðωÞ ¼
ðgμBÞ2GretðωÞBDðωÞ.
The retarded Green’s function is given by GretðωÞ ¼

GðωÞ þ G�ð−ω�Þ, where

GðωÞ ¼ i
Z

∞

0

dteiωthN̂DðtÞN̂Dð0ÞiH: ð3Þ

As usual, ω contains an infinitesimal imaginary part
to ensure convergence of the integral. We will calculate
GðωÞ using ĤT as perturbation. A substantial part of the
calculations for the FM and the AF setup are identical, and
we will distinguish between the two only when necessary.
The lowest-order contribution to GðωÞ is quadratic in

ĤT . It can be written as

GðωÞ ¼ −
i
2

Z
∞

0

dteiωt
Z

∞

−∞
dt1

Z
∞

−∞
dt2

× hTtĤ
0
Tðt1ÞĤ0

Tðt2ÞN̂0
DðtÞN̂0

Dð0Þi0; ð4Þ

where ĤT should be written in terms of dð†Þi ’s and rð†Þi ’s. The
prime denotes an operator in the Heisenberg representation
with respect toH0. Since the operator N̂

0
DðtÞ is defined such

that N̂0
DðtÞjgsi ¼ 0, where jgsi denotes the ground state of

the system under H0, it follows immediately that there is
only one time ordering that gives nonzero contributions. This
time ordering leads to two different contributions to GðωÞ
that differ in the number of magnetic excitations in the
intermediate state (either −1 or 1). After performing
the integrations in Eq. (4) as well as a transformation to
momentum space we obtain to second order in ĤT

GðωÞ ¼ J2T
4

X
k;q

� hdkd†ki0hr†qrqi0
ðεk − εqÞ2ðεk − εq − ωÞ

þ hd†kdki0hrqr†qi0
ðεq − εkÞ2ðεq − εk − ωÞ

�
; ð5Þ

which is valid both for AF and FM systems. Equation (5)
with ω ¼ 0 gives us CM. When supplied with the relevant
expectation values below, Eq. (5) tells us that the imaginary
part ofGretðωÞ at small ω ≪ Eþ

D; E
−
D [which determines RM,

see Eq. (1)] is zero to second order in ĤT . Hence, we need to
analyze higher-order contributions to determine RM. We will
determine these contributions before analyzing Eq. (5) in
more detail.
We have explicitly checked that the only time ordering

in the fourth-order expression for GðωÞ that leads to an
imaginary contribution at small ω ≪ Eþ

D; E
−
D is given by

hĤ0
Tðt1ÞN̂0

DðtÞĤ0
Tðt2ÞĤ0

Tðt3ÞN̂0
Dð0ÞĤ0

Tðt4Þi0. This leads to
six unique terms that cannot be excluded a priori and differ
in the number of magnetic excitations in the intermediate
states. We illustrate the procedure followed to determine
GðωÞ by focusing on the term for which the excess number
of magnetic excitations on the dot varies as 0 → 1 →
0 → 1 → 0. After performing the integrations over time as
well as a transformation to momentum space we find the
following contribution to Im½GðωÞ� at small ω to fourth
order in ĤT due to this term:

�
JT
2

�
4 X
k;k̄;q;q̄

hd†kdkd†k̄dk̄i0hrqr†q̄rq̄r†qi0
ðεq − εkÞ2ðεq − εk̄Þ2

πδðεq − εq̄ þ ωÞ; ð6Þ

where it is understood that we need to take the continuum
limit on the reservoir in order for the delta function to be
well defined. The other terms that make up GðωÞ can be
calculated analogously, and we will refrain from repeating
the required steps here.
Up to this point, our results forGðωÞ are identical for FM

and AF systems. The sole difference between the two arises
now from the fact that hd†kdk̄i0 and hr†krk̄i0 are different for
AF and FM systems.
AF case.—Assuming T→0, we put hr†krk̄i0¼hd†kdk̄i0¼

δk;k̄θðεk−μMÞ. We can perform the summation over q
in Eqs. (5)–(6) by replacing

P
q → νR

R
dq, where νR ¼

aj∂εq;R=∂qj−1 is the density of states in the reservoir. This
leads to

CM ¼ tsd
X
k

1

ðεk − μMÞ2
and RM ¼ h

2ðgμBÞ2
; ð7Þ

where tsd ¼ ðgμBÞ2νRðJT=2Þ2 is the “magnetic transpar-
ency” of a small magnetic dot. We note that CM is well
defined since jεk − μMj ≥ min½Eþ

D; E
−
D�. For large dots, we

can also perform the summation over k using the density
of states in the dot, νD (keeping in mind the previously
discussed difficulties in the experimental realization of a
finite E�

D for such dots). This leads to

CM ¼ tlD

�
1

Eþ
D
−

1

E−
D

�
and RM ¼ h

ðgμBÞ2
; ð8Þ

where tlD ¼ ðgμBÞ2νDνRðJT=2Þ2. In both cases we recover
the fact that the spin resistance is universal in the sense that
it does not depend on any microscopic parameters of the
dot, not even on the coupling between the dot and the chain.
This result is related to the fact that the AF spin-1=2 chain
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maps onto one-dimensional fermions with interactions (see
Supplemental Material [34]). This model has been studied
extensively in the past few years in the context of electronic
RC circuits [19–27]. The mapping allows us to support that
the universality of the spin resistance remains valid for any
value of the tunneling coupling [23,34].
Furthermore, the effect of electron-electron interactions

in the reservoir and dot on the parameters of the RC circuit
have been analyzed using a Luttinger liquid description
[23,24]. Since these interactions translate to an SziS

z
iþ1

term in the spin chains, these results allow us to extend
Eqs. (7)–(8) to finite values of ΔDðRÞ ≤ 1. A finite value of
ΔDðRÞ corresponds to a deviation of the Luttinger liquid
parameter from the noninteracting value K ¼ 1. This
simply leads to an additional factor 1=K in the result for
RM, so the resistance remains universal. The value of the
capacitance CM is changed in a nontrivial manner [23,24].
FM case.—The zero temperature limit is pathological for

FM systems, since the Bose-Einstein distribution diverges
at T ¼ 0. Therefore, we will consider finite (but small)
temperatures. Specifically, we will assume that kBT ≪ Eþ

D,
so that we can put hd†kdk̄i0 ¼ 0. Furthermore, we linearize
hr†qrq̄i0 ¼ nBðEþ

R þ ϵqÞ around the minimal value of the
energy spectrum Eþ

R . Substitution of these values into
Eqs. (5)–(6) yields

CM ¼ tlD
2

nBðEþ
R Þ

Eþ
D − Eþ

R

δ

Eþ
D − Eþ

R
;

RM ¼ −
2h

ðgμBÞ2
�
Eþ
D − Eþ

R

δ

�
2

; ð9Þ

where δ ¼ jnBðEþ
R Þ=n0BðEþ

R Þj. We find thus that the spin
resistance is no longer universal for FM systems. The fact
that the relaxation resistance is negative is not a funda-
mental issue but only means that the dynamical response of
the spin capacitor is out of phase with the perturbation.
Note that the universality of the relaxation resistance

in electronic interacting systems was shown in Ref. [23] to
be intimately related to the Korringa-Shiba relation [35]
(see also Garst et al. [36] for an extended version of this
relation) which relates the imaginary part of the charge
susceptibility to the square of its real part. Such a relation
applies at or near a Fermi-liquid fixed point. It is therefore
not surprising to find a nonuniversal behavior for RM in the
FM case, where low-energy excitations are bosonic.
We turn now to the possibility of using the setup displayed

in Fig. 1 as a source of magnetic quasiparticles. Fève et al.
have shown [16] experimentally that the electronic quantum
RC circuit can be used as an on-demand single-electron
source. Since theAF systemmaps onto the electronic system,
we propose that the AF system can be used as an on-demand
single-spinon source, with the simple substitution eVDðtÞ →
gμBBDðtÞ. For FM systems, the situation is fundamentally
different; since bosonic statistics allows for more than one
magnon per momentum state, it is not possible to create a

single-magnon source using the same mechanism. However,
an on-demand few-magnon source appears feasible.
Finally, we comment on the possibility of measuring the

properties of the magnetic quantum RC circuit experimen-
tally. The ultimate implementation uses parallel spin chains,
such as depicted in Fig. 1(a). Furthermore, molecular mag-
nets [37–42] could be a good candidate to take the role of
magnetic dot due to their beneficial properties, such as their
increased size, chemical engineerability, and the possibility
to control the spin state using electric instead of magnetic
fields [43]. However, based on the magnitude of the spin
currents [44] and the involved time scales, the implementa-
tion of the magnetic RC circuit in the above systems appears
challenging, albeit not impossible. Therefore, we propose
two alternative systems to test our predictions initially.
Our first proposal concerns ultracold atoms trapped in

optical lattices. It has been shown [32,33] that these can be
used toimplementeffectivespin-1=2Heisenbergchains (both
AF and FM) with tunable anisotropy ΔRðDÞ. Furthermore,
it is now possible [45–47] to measure the spin state in such
systems dynamically, locally, and with single-spin precision.
We assume that the (effective) magnetic field BDðtÞ has

the form BDðtÞ ¼ BD cosðω0tÞ. The validity of our results
then requires BD;ℏω0 ≪ jE�

Dj. From Eq. (1) it follows
that the resulting magnetization MDðtÞ ¼ M0

D cosðω0tÞ−
M1

D sinðω0tÞ, where M0
D¼CMBD and M1

D¼RMC2
Mω0BD.

To measure RM;CM, one has to be able to distinguish
between these two contributions. For simplicity, we will
give numbers for AF systems and small dots. Using Eq. (7)
and taking the continuum limit on the dot, we estimate
M0

D ∼ ξðgμBÞ and M1
D ∼ ξ2ðℏω0=gμBBDÞðgμBÞ, where ξ ¼

ðJT=JDÞðJT=JRÞðgμBBD=E
þ
DÞ is a small fraction. We have

assumed that jEþ
Dj ¼ jE−

Dj and εk;DðRÞ ¼ −JDðRÞ cosðkaÞ. If
we assume JT ≲ JD ≈ JR [see the discussion below Eq. (8)
for the validity of this approximation] and ℏω0 ≈ gμBBD ¼
0.1Eþ

D, it follows that a collection of ∼102 parallel chains
suffices to determine RM;CM in repeated measurements.
For the smallest magnetic dots, Eþ

D ≈ JD. A representative
value [33] for JD is JD=ℏ ∼ 0.1 kHz, which leads to
ω0 ¼ 10 Hz, smaller than the typical lifetime of excitations
in such systems [47].
Alternatively, artificially engineered atomic-spin chains

could be used as sources of single spin excitations. We
propose to use a setup very similar to that used in Ref. [6]. In
our proposed setup, a single chain (consisting, for example,
of several artificially coupled Fe atoms) acts as a magnetic
dot, and is exchange coupled to a magnetic reservoir.
By applying a pulsed magnetic field to the chain, a single
magnetic excitation can be transported from the reservoir
onto the chain or vice versa. Since it is possible to determine
the spin state of the atoms in the chain using spin-polarized
STM tips [6], the extra (or missing) spinon in the atomic
spin chain can be detected. The magnitude of the applied
magnetic field should be on the order of the charging energy
E�
D ≈ JDa=L ≈ 100 mT for a spin chain consisting of 10
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spins and JD ≈ 1 T. The typical tunneling time of the
magnetic excitation can be estimated using Fermi’s golden
rule as τ−1 ≈ J2T=ðhE�

DÞ. To illustrate, we find τ ≈ 40 ns for
JT ¼ 10 mT and τ ≈ 4 μs for JT ¼ 1 mT.
Conclusion.—We have studied the magnetic RC circuit

and computed its spin capacitance and resistance. We have
shown that the resistance is universal for AF but not for
FM systems. We have shown that our predictions can be
presently tested with time-resolved experiments in ultra-
cold atoms in optical lattices. This opens the path towards
the realization of on-demand single spin-excitation emitters
that would be one of the key ingredients for spintronics.
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