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We investigate the spin dynamics of half-solitons in quantum fluids of interacting photons (exciton
polaritons). Half-solitons, which behave as emergent monopoles, can be accelerated by the presence of
effective magnetic fields. We study the generation of dc magnetic currents in a gas of half-solitons. At low
densities, the current is suppressed due to the dipolar oscillations. At moderate densities, a magnetic current
is recovered as a consequence of the collisions between the carriers. We show a deviation from Ohm’s law
due to the competition between dipoles and monopoles.
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Since the original idea of Dirac [1], magnetic monopoles
have been one of the most important physical questions
in quantum mechanics. In fact, “real” elementary magnetic
charges have not been observed up to now, despite long
efforts to detect them [2]. Recently, magnetically frustrated
materials, or spin ices [3,4], offered the possibility of
investigating magnetic charge transport. Besides the sub-
stantial experimental evidence to support the existence of
spin-ice magnetic monopoles [5–8], the measurement of
the charge and current of magnetic monopoles has become
possible [9]. In fact, signatures of emergent magnetic
monopoles are present in other systems, such as nanowires
[10] and spinor Bose-Einstein condensates [11]. Physically,
these monopoles are elementary excitations in the system,
or quasiparticles, a concept that is widely used in solid state
physics to describe the behavior of carriers in the band
structure [12]. Modern electronics, for example, is success-
fully described in their terms. Quasiparticles differ from
“real” particles in the sense that they cannot exist outside
the underlying medium.
An interesting example of quasiparticles is the half-

solitons (HSs) in spinor Bose-Einstein condensates (BECs).
HSs are stable localized excitations of spinor BECs with
spin-anisotropic interactions [11,13,14]. Recently, some
of us have experimentally demonstrated that they behave
like effective magnetic charges, accelerated along effective
magnetic fields [11]. HSs are observed in exciton-polariton
condensates in microcavities [15] behaving as interacting
photon fluids [16]. The monopolar spin texture of HSs
results from the spin of photonic particles. Photons do not
interact with a real magnetic field [17]. However, as for any
two-level system, the coupling between their spin compo-
nents can be described by Pauli matrices, as an action of
an effective magnetic field on a pseudospin. The important
difference between artificial electric and magnetic fields is
that the latter couples with the spin of particles via the Pauli
matrices. The achievement and control of such effective
magnetic fields are actively pursued both in atomic BECs

[18–20] and photonic systems [21–25]. Electricity, which
is the basis of the modern world, is a current of electric
charges in applied electric fields. By analogy, the motion
of magnetic charges in a magnetic field has been gene-
rally referred to as “magnetricity” [9]. Therefore, the idea
of using HSs for magnetricity appears both natural and
important.
In this work, we present a theoretical study of monopole

transport with HS gases: the collective motion of emergent
monopoles in the presence of an effective magnetic field.
We show that at very low gas densities, the conductivity is
suppressed due to dipole oscillations. At higher densities,
when collisions between HSs are more likely, the magnetic
conductivity is optimal. For very dense gases, the conduc-
tivity decreases as a consequence of the collision time
shortening. We also predict a deviation from the magnetic
Ohm’s law j ∝ H for moderate magnitudes of the applied
field H. To confirm our predictions based on a kinetic
model, we perform numerical simulations of realistic
experimental configurations, where the dc conductivity
can be effectively measured. Finally, we estimate the
mobility of magnetic charges to 107 cm2=V s. This value
is an order of magnitude larger than the record value of the
electronic mobility in graphene [26,27] and confirms the
anticipated advantage of using photonic magnetic monop-
oles [28] over other systems for application purposes.
Relativistic dynamics of half-solitons.—Exciton polar-

itons are bosonic quasiparticles that result from strong light-
matter coupling in semiconductor microcavities. Their most
important properties in the framework of the present study
are their capacity to form a condensate, their small effective
mass, and a very strong nonlinearity. Exciton-polariton
condensates in one-dimensional systems can be described
by the spinor Gross-Pitaevskii equation [16,29]

iℏ
∂ψ�
∂t ¼ −

ℏ2

2m
Δψ� þ α1jψ�j2ψ� þ α2jψ∓j2ψ� −Hψ∓;
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where ψ ¼ ðψþ;ψ−Þ is the spinor representing two circular
polarizations [29]. Here,H ¼ Hex is the effective magnetic
field, describing the longitudinal-transverse splitting due
to the confinement [30]. Exciton polaritons are also
characterized by a strong spin anisotropy (typically,
−0.2α1 ≲ α2 ≲ −0.1α1), which allows the existence of
half-integer topological defects, such as half-solitons and
half-vortices [31], which can bewritten as a scalar soliton in
a single spin component ψðxÞ ¼ ffiffiffiffiffi

n0
p

tanhðx= ffiffiffi
2

p
ξÞ, with

the healing length ξ ¼ ℏ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α1mn0

p
[32–34]

ψþ ¼
ffiffiffiffiffi
n0
2

r �
i
v
c
þ 1

γ
tanh

�
x − yffiffiffi
2

p
ξγ

��
; ψ− ¼

ffiffiffiffiffi
n0
2

r
: ð2Þ

Here, the half-soliton propagates with a velocity v, y ¼
vtþ x0 is the soliton centroid, c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α1n0=m
p

is the sound
speed, and γ ¼ ð1 − v2=c2Þ−1=2 is the relativistic factor. This
solution is characterized by a divergent in-plane pseudospin
pattern Sx ¼Reðψþψ�

−Þ=2≃ ðn0=2γÞsgnðy−xÞ. Figure 1(a)
shows the density and the pseudospin for two HSs in
opposite spin components. The magnetic charge is defined
by analogy with Maxwell’s equation ρ ¼ ∇ · S, and the
charge of a single HS is q ¼ �n=2 ¼ �n0=2γ (as shown by
the plus and minus symbols in Fig. 1). Since the charge
is defined by the in-plane pseudospin texture, it does not
depend on the σ� component in which the HS appears. The
dynamics of each spin in a magnetic field is governed by
the precession equation ∂S=∂t ¼ S ×H. The monopole

dynamics of Eq. (2) can be obtained by calculating the
magnetic force Fm ¼ −n0H=2γ and the acceleration
a ¼ n0H=2M0γ

2, where M0 ¼ 2
ffiffiffi
2

p
n0ξm is the absolute

value of the HS rest mass [35]. Integrating once, the velocity
is vðtÞ ¼ c tanh ðt=τ0Þ [36], where τ0 ¼ 2M0c=n0H, which
means that the soliton cannot be accelerated above the
sound speed c. This trajectory is reproduced by numerical
simulations of Eq. (1).
Spin dynamics.—Let us now consider two HS solutions

for the spinor condensate [ψ ¼ ðψþ;ψ−Þ], resulting
from the superposition of solitons in each of the spin
components, located at the positions �y=2

ψ� ¼
ffiffiffiffiffi
n0
2

r �
�i

_y
c
þ 1

γ
tanh

�
x∓y=2ffiffiffi

2
p

ξγ

��
: ð3Þ

Notice that this solution is different from the kink-antikink
solution [37], which consists of a product of solitons within
the same spin component. Equation (3) will be used to
model the soliton gas in the second part of the paper. The
pseudospin texture is invariant with respect to the exchange
of the two HSs y → −y: for this particular solution, the spin
field is divergent for the soliton on the right. Moreover, to
assure the continuity of the phase, it is impossible to have
two solitons of the same type (kink-kink) next to each other.
Figure 1, therefore, is the most general spin texture. When
two solitons cross each other, the “sign” of each monopole
is inverted; i.e., the one located in the σ− projection,
initially with a convergent texture, becomes divergent after
crossing, and vice versa. In Figs. 1(b)–1(d), we depict the
temporal evolution of the polarization degree ρc ¼ ðnþ −
n−Þ=ðnþ þ n−Þ of the HS by solving Eq. (1). Figure 1(b)
illustrates the simplest behavior: acceleration without
crossing for H > 0; Fig. 1(c) illustrates the inversion of
the charge (the “red” σ− soliton is initially accelerated to the
left and then to the right). In this case, the two solitons
undergo dipolar oscillations, forming a “molecule,” due
to the inversion of the spin texture (charge). Figure 1(d)
depicts the bouncing of the two HSs without the charge
inversion, due to the interactions between spin components.
We note the repulsive interaction between solitons for
α2 < 0, as a consequence of their negative mass [38].
We proceed to a variational analysis of the spin

dynamics by using Eq. (3) as an ansatz. The variational
energy E½y; _y� ¼ R

Edx, with E¼P
σ¼�½ðℏ2=2mÞjψσj2þ

ð1=2Þα1ðjψσj2− ðn0=2ÞÞ2�þα2ðjψþj2jψ−j2− ðn=2ÞÞ−HSx
representing the energy density [32,33], is given by

E½y; _y� ¼ 4
ffiffi
2

p
3

�
1 − _y2

c2

�
3=2

α1n20ξþ
ffiffiffi
2

p
Hn0ξζ cothðζÞ

þ ffiffiffi
2

p �
1 − _y2

c2

�
3=2

α2n20ξ
sinhðζÞ−ζ coshðζÞ

sinh3ðζÞ ; ð4Þ

where ζ ¼ yð1 − _y2=c2Þ1=2= ffiffiffi
2

p
ξ. The dynamics of a HS

pair can then be calculated via the Hamilton equations

FIG. 1 (color online). Polarization degree ρc for a pair of half-
solitons. (a) The red (dark gray) [blue (light gray)] line depicts the
density profile of a half-soliton in the σ ¼ − [σ ¼ þ] component.
The arrows indicate the pseudospin Sx. Numerical time evolution
of ρc as extracted from Eq. (1) in the presence of a constant
magnetic field H ¼ �10ex μ eV (black arrows), showing the
trajectories of two HSs: (b) acceleration for H > 0, (c) oscil-
lations, and (d) bouncing forH < 0. The plus and minus symbols
indicate the sign of the magnetic charges.
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∂E=∂yþ d=dtð∂E=∂ _yÞ ¼ 0 and corresponds to that of a
relativistic anharmonic oscillator. We restrict our discussion
to the case of attractive interspin interaction α2 ¼ −0.2α1.
The results are summarized in Fig. 2(a). If the solitons are
accelerated away from each other (H > 0), their trajectories
correspond to open orbits in the phase space; on the
contrary, if accelerated towards each other, nonlinear
oscillations of the HS molecule take place. Because of
the competition between the short-range repulsion and the
magnetic force, the system exhibits three types of oscil-
lations, depending on the initial separation d≡ yðt ¼ 0Þ:
below the critical field H1, defined through the condition
∂E=∂yj_y¼0 ¼ 0, repulsion dominates and the solitons
bounce at distances larger than d [mode I, also shown in
Fig. 1(d)]; for H1 < H < H2, with H2 defined by the
contour Ej_y¼0 ¼ 0, dipolar oscillations possess an ampli-
tude smaller than the initial separation d (mode II); finally,
for H > H2, the solitons oscillate by crossing each other
[mode III, also in Fig. 1(c)]. The critical fields H1 and H2

for the different oscillatory modes are shown in Fig. 2(b).
For small-amplitude oscillations d≲ ξ, the dynamics is
given by the equation ÿþ ω2y ¼ 0 and the oscillation
frequency is

ω ¼ cs
ξ

�
5H − 4α2n0

15ðH þ 4α1n0 þ 2α2n0Þ
�

1=2
: ð5Þ

A set of half-solitons: The soliton gas.—We consider a
dense soliton gas, for which the multiple soliton solution
with the inverse scattering transform [39] provides a
continuum of eigenvalues. In that case, the solitons are
uncorrelated and therefore ergodic enough to justify a
statistical treatment. Kinetic equations have been used to
describe wave turbulence in optical fibers [40]. A detailed
kinetic model of an uncorrelated dense soliton gas has been
provided in Ref. [41], and its collective behavior has been
addressed in Refs. [37,42] and by us in Ref. [38]. Motivated
by these results, we describe the evolution of the distribu-
tions f�ðx; v; tÞ with the following kinetic equations of the
Boltzmann type:

∂f�
∂t þ v

∂f�
∂x þ qðvÞ

MðvÞH
∂f�
∂v ¼ I½f��; ð6Þ

where qðvÞ=MðvÞ ¼ n0=2M0γ
2 is the relativistic charge-

mass ratio. Interesting features like dynamic crystallization
have also been captured with kinetic equations of this type
[38,43,44]. In order to estimate the transport properties of
the system, in analogy with the Drude model for electrons
in the presence of an electric field [45], we assume
small departures from equilibrium, allowing for the colli-
sion integral I½f�� to be written in the relaxation-time
approximation [46] I½f��≃ −ðf� − f�0 Þ=τ�, where τ� is
the relaxation time and f�0 is the phase-space equilibrium
distribution. We define the total magnetic current as
j ¼ jþ − j−, where jσ ¼ hqðvÞNcvi ¼

R
qðvÞNcvfσdv

and Nc is the concentration of magnetic charges. For
symmetry, the total current is given as j ¼ 2jþ ¼ −2j−,
so we calculate the current associated with the σþ compo-
nent, thus dropping the superscript in the equations above.
From Eq. (6), the dc magnetic current can be written as

j ¼ Ncn20τ
2M0

H
Z

v
�
1 −

v2

c2

� ∂f0
∂v dv: ð7Þ

Equation (7) incorporates the relativistic behavior of HSs,
which implies a vanishing current near the sound speed
v≃ c. To estimate the collision time τ, we make use of the
Matthiessen’s rule [47]: 1=τ ¼ 1=τH þ 1=τσ;σ þ 1=τσ;−σ ,
where τH is the collision rate induced by the field H;
τσ;σ (respectively, τσ;−σ) represents the collision rate due to
the short-range (but not contact) topological interaction
between solitons of the same (respectively, opposed) spin
projection [33,38]. A detailed derivation of τ is provided in
the Supplemental Material [48].
The two-body dynamics is in competition with the

collective behavior of the system. Thus, the concentration
of available monopoles is not necessarily the same as that
of the gas. To estimate the concentration of carriers, we
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FIG. 2 (color online). (a) Phase-space map for a pair of
half-solitons initially separated by d ¼ 2.5ξ. Solid (dashed)
lines are obtained for H > 0 (H < 0). The thick line is
obtained for H ¼ 0. The red (dark gray) line is the separatrix
between modes II and III. (b) Magnitude of the critical fields
H1 [red (dark gray) line] and H2 [blue (light gray) line] as a
function of the initial separation d. The dc monopole current
as a function of the applied field [gas density] is shown
in (c) [(d)]. The shadow limits the Ohmic region. (c),(d) Solid
lines are the theoretical predictions and the dots with error bars
are the numerical results. Other parameters: m ¼ 5 × 10−5me,
ξ ¼ 1 μm, and n0 ∼ 500 μm−1.
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extend Onsager’s theory for the conduction of weak
electrolytes [48,49]. Using the fermionic statistics of
solitons f0 ¼ N0=ð2vFÞΘðvF − vÞ [38], Eq. (7) yields

j ¼ N0n20
2M0

τHη

�
1 −

v2F
c2

�
; ð8Þ

with η standing for the fraction of dissociated monopoles.
The Fermi velocity of the gas vF ¼ πℏN0=M0 is small
compared to the sound speed for the case of polariton
condensates, but it is not necessarily the case for cold atomic
condensates—indeed, the same calculations could be
performed for the latter—for which we may have n0ξ ∼ 1.
The features of Eq. (8) are summarized in Figs. 2(c) and2ðdÞ.
For small values of the field, η does not vary with H and
the dc current satisfies the Ohm’s law j ∝ H [see Fig. 2(c)].
For moderate values of H, the system enters a non-Ohmic
regime, characterized by ∂j=∂H < 0. This behavior is
qualitatively different from the deviation from the Ohmic
response observed in spin ices, where the conductivity
monotonically increases with the applied field [9]. The
reason for such a difference resides in the fact that the
soliton-pair dissociation energy depends on the density of
the HS gas; besides, our system is 1D and the jamming of
carriers is more important than in spin ices. In Fig. 2(d), we
plot the conductivity against theHS gas density. For very low
densities, the transport is dominated by two-particle dynam-
ics and the dc current is strongly suppressed. For higher
densities, the response of the system is dictated by collisions.
As a consequence, the magnetic conductivity reaches
its maximum for moderate densities (N0 ≈ 0.12 μm−1

for H ¼ 6 μeV).
We have also performed numerical simulations using

Eq. (1) with a gas of HS taken as an initial condition. In
Fig. 3, we illustrate the most relevant regimes of the
magnetic current. In Fig. 3(a), we observe the breaking
of dipolar oscillations (or molecule dissociation) due to
collisions between the solitons within the same component.
For moderate values of density [Fig. 3(b)], such collisions,
similarly to the Drude model for electron conduction, lead
to the appearance of a net current of magnetic charges
(Ohmic response). Finally, for higher values of density,
the conductivity is suppressed [Fig. 3(c)], and the small-
amplitude oscillations become the dominant mechanism.
All these features are in qualitative agreement with the
analytical estimates, as illustrated in Fig. 2. The deviation
between the analytic theory and the numerical results may
stem in the fact that the transport model neglects the
acoustic radiation of solitons as they accelerate [50]. We
moreover notice that quantum fluctuations are neglected, as
solitons are here treated as classical particles. Therefore, a
more suitable treatment of the transport properties might
be done in the framework of Luttinger theory [38,51,52],
which would eventually capture additional features beyond
the present mean-field approach.
To describe a more realistic experimental configuration

(see Ref. [48] for details), we simulate Eq. (1) for polaritons

propagating in a one-dimensional cavity by adding (i) a
narrow Gaussian barrier described by the potentialU�ψ� ¼
U0 exp½−ðx − LÞ2=λ2�ψ�, (ii) a coherent, linearly polarized
pump P� ¼ P0ðxÞeiðkx−ωtÞ, and (iii) the finite lifetime term
−iℏψ�=2τ. The barrier, located at the position x ¼ L, is
strong enough to confine the HS gas. Initially, the magnetic
field is absent, and the solitons remain trapped without
escaping. Then, the effective magnetic field is switched on
(it can be controlled externally [53]), and we observe the
extraction of HS from the confined region [red traces
propagating to the right in Fig. 3(d)], showing the linear
polarization degree of the condensate. An alternative way of
generating soliton trains has recently been proposed [54].
The monopole mobility can be directly estimated from

our calculations, for which we compare the potential
energies corresponding to a fixed displacement. Indeed,
a mobility of 106 cm2=Vs (a record value obtained in
graphene [26,27]) means that an electron is accelerated
up to a speed a of 106 cm=s in a field of 1 V=cm. The
same displacement of a half-soliton corresponds to a
magnetic energy of 10 eV (assuming n0 ∼ 2 × 102 μm−1

and a Zeeman splitting of 5 μeV), while the velocity is
∼108 cm=s, which provides an equivalent mobility of
μ ¼ 107 cm2=Vs. Such a high value is due to the extremely
low polariton mass (m < 10−4me).
To conclude, we have studied the transport properties of

a gas of half-solitons in spinor polariton condensates in the
presence of an effective dc magnetic field. We found that
the monopole current deviates from the Ohmic response

FIG. 3 (color online). (a) Breakdown of oscillations due to
the interactions between HSs in the same component. (b) The
onset of magnetricity (N0 ∼ 0.08 μm−1). (c) Suppression of
conductivity due to short-range interaction (N0 ∼ 0.15 μm−1).
(d) Extraction of half-solitons (red traces) from the trapping
region (λ ¼ 0.5 μm, L ¼ 45 μm, U0 ¼ 2 meV, and τ ¼ 30 ps)
by a field H ¼ 5 μeV. The white arrows are a guide for the eyes.
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due to the competition of half-soliton oscillations and
collisions. Record values of mobility can be expected
due to the low polariton mass.

The authors acknowledge the support of the EU
POLAPHEN, ANR Quandyde, and GANEX projects.

*htercas@gmail.com
[1] P. Dirac, Proc. R. Soc. A 133, 60 (1931).
[2] J. L. Pinfold, AIP Conf. Proc. 1304, 234 (2010).
[3] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske,

and K.W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997).
[4] C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature

(London) 451, 42 (2007).
[5] L. D. C. Jaubert and P. C. W. Holdsworth, Nat. Phys. 5, 258

(2009).
[6] T. Fennel, P. P. Deen, A. R. Wildes, K. Schmalzl, D.

Prabhakaran, A. T. Boothroyd, R. J. Aldus, D. F.McMorrow,
and S. T. Bramwell, Science 326, 415 (2009).

[7] D. J. P. Morris et al., Science 326, 411 (2009).
[8] H. Kadowaki, N. Doi, Y. Aoki, Y. Tabata, T. J. Sato,

J. W. Lynn, K. Matsuhira, and Z. Hiroi, J. Phys. Soc. Jpn.
78, 103706 (2009).

[9] S. T. Bramwell, S. R.Gibli, S. Calde, R.Aldu,D. Prabhakaran,
and T. Fennell, Nature (London) 461, 956 (2009).

[10] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320,
190 (2008).

[11] R. Hivet et al., Nat. Phys. 8, 724 (2012).
[12] L. D. Landau, Sov. Phys. JETP 3, 920 (1956); 5, 101 (1957).
[13] H. Flayac, D. D. Solnyshkov, and G. Malpuech, Phys.

Rev. B 83, 193305 (2011); New J. Phys. 14, 085018
(2012).

[14] H.Flayac,D. D.Solnyshkov, I. A. Shelykh, andG.Malpuech,
Phys. Rev. Lett. 110, 016404 (2013).

[15] A. Kavokin, J. J. Baumberg, F. P. Laussy, and G. Malpuech,
Microcavities (Oxford University Press, New York, 2008).

[16] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
[17] Contrary to pure photonic states, exciton polaritons do

interact with a real magnetic field via the charges constitut-
ing their excitonic part.

[18] Y.-J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto,
and I. B. Spielman, Nature (London) 462, 628 (2009).

[19] Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Nature
(London) 471, 83 (2011).

[20] J. Dalibard, F. Gerbier, G. Juzeliünas, and P. Öhberg, Rev.
Mod. Phys. 83, 1523 (2011).

[21] R. O. Umucalilar and I. Carusotto, Phys. Rev. A 84, 043804
(2011).

[22] M. Hafezi, E. A. Demler, M. P. Lukin, and J. M. Taylor,
Nat. Phys. 7, 907 (2011).

[23] M. Hafezi, J. Fan, A. Migdall, and J. Taylor, Nat. Photonics
7, 1001 (2013).

[24] M. C. Rechtsman, J. M. Zeuner, A. Tnnermann, S. Nolte,
M. Segev, and A. Szameit, Nat. Photonics 7, 153 (2013).

[25] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature (London) 496, 196 (2013).

[26] K. S. Novoselov, “Nobel Lecture,” 2010 (unpublished).

[27] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg,
J. Hone, P. Kim, and H. L. Stormer, Solid State Commun.
146, 351 (2008).

[28] S. T. Bramwell, Nat. Phys. 8, 703 (2012).
[29] I. A. Shelykh, Y. G. Rubo, G. Malpuech, D. D. Solnyshkov,

and A. Kavokin, Phys. Rev. Lett. 97, 066402 (2006).
[30] L. Klopotowski, M. D. Martin, A. Amo, L. Vina, I. A.

Shelykh, M.M. Glazov, G. Malpuech, A. V. Kavokin, and
R. Andre, Solid State Commun. 139, 511 (2006).

[31] K. G. Lagoudakis, T. Ostatnicky, A. V. Kavokin, Y. G. Rubo,
R. Andre, and B. Deveaud-Pledran, Science 326, 974 (2009).

[32] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation
(Oxford Science, New York, 2003).

[33] P. Öhberg and L. Santos, Phys. Rev. Lett. 86, 2918 (2001).
[34] D. J. Frantzeskakis, J. Phys. A 43, 213001 (2010).
[35] The mass of each soliton is defined by the number of

polaritons depleted from the condensateM¼m
R
ψ�
�ψ�dx¼

−2
ffiffiffi
2

p
n0ξm=γ, therefore being negative. M0 is here defined

as the magnitude of the rest mass.
[36] D. D. Solnyshkov, H. Flayac, and G. Malpuech, Phys. Rev.

B 85, 073105 (2012).
[37] B. A. Malomed, A. Schwache, and F. Mitschke, Fiber

Integr. Opt. 17, 267 (1998); B. A. Malomed and A. A.
Nepomnyashchy, Europhys. Lett. 27, 649 (1994); P. Franco,
F. Fontana, L. Cristiani, M. Midrio, and M. Romagnoli,
Opt. Lett. 20, 2009 (1995).

[38] H. Terças, D. D. Solnyshkov, and G. Malpuech, Phys. Rev.
Lett. 110, 035303 (2013).

[39] V. E. Zakharov, JETP Lett. 33, 538 (1971).
[40] V. E. Zakharov, Stud. Appl. Math. 122, 219 (2009); D. B. S.

Soh, J. P. Koplow, S. W. Moore, K. L. Schroder, and W. L.
Hsu, Opt. Express 18, 22393 (2010); P. Suret, A. Picozzi,
and S. Randoux, Opt. Express 19, 17852 (2011).

[41] G. A. El and A. M. Kamchatnov, Phys. Rev. Lett. 95,
204101 (2005).

[42] A. Fratalocchi, C. Conti, G. Ruocco, and S. Trillo, Phys.
Rev. Lett. 101, 044101 (2008).

[43] A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and
F. Sanchez, Opt. Lett. 33, 524 (2008).

[44] S. Rutz and F. Mitschke, J. Opt. B 2, 364 (2000).
[45] P. Drude, Ann. Phys. (Berlin) 306, 566 (1900); A.

Sommerfeld, Z. Phys. 47, 1 (1928).
[46] V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in

Metal and Semiconductors (North-Holland, Amsterdam,
1987).

[47] T. P. Beaulac, P. B. Allen, and F. J. Pinski, Phys. Rev. B 26,
1549 (1982).

[48] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.113.036403 for details
on the calculation of the monopole conductivity in Eq. (7).

[49] L. Onsager, J. Chem. Phys. 2, 599 (1934).
[50] N. G. Parker, N. P. Proukakis, C. F. Barenghi, and C. S.

Adams, J. Phys. B 37, S175 (2004).
[51] I. Safi, Eur. Phys. J. B 12, 451 (1999).
[52] I. Safi and H. Saleur, Phys. Rev. Lett. 93, 126602 (2004).
[53] G. Malpuech, M. M. Glazov, I. A. Shelykh, P. Bigenwald,

and K. V. Kavokin, Appl. Phys. Lett. 88, 111118 (2006).
[54] F. Pinsker and H. Flayac, Phys. Rev. Lett. 112, 140405

(2014).

PRL 113, 036403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
18 JULY 2014

036403-5

http://dx.doi.org/10.1098/rspa.1931.0130
http://dx.doi.org/10.1063/1.3527206
http://dx.doi.org/10.1103/PhysRevLett.79.2554
http://dx.doi.org/10.1038/nature06433
http://dx.doi.org/10.1038/nature06433
http://dx.doi.org/10.1038/nphys1227
http://dx.doi.org/10.1038/nphys1227
http://dx.doi.org/10.1126/science.1177582
http://dx.doi.org/10.1126/science.1178868
http://dx.doi.org/10.1143/JPSJ.78.103706
http://dx.doi.org/10.1143/JPSJ.78.103706
http://dx.doi.org/10.1038/nature08500
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1038/nphys2406
http://dx.doi.org/10.1103/PhysRevB.83.193305
http://dx.doi.org/10.1103/PhysRevB.83.193305
http://dx.doi.org/10.1088/1367-2630/14/8/085018
http://dx.doi.org/10.1088/1367-2630/14/8/085018
http://dx.doi.org/10.1103/PhysRevLett.110.016404
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/PhysRevA.84.043804
http://dx.doi.org/10.1103/PhysRevA.84.043804
http://dx.doi.org/10.1038/nphys2063
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1038/nphoton.2012.302
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1016/j.ssc.2008.02.024
http://dx.doi.org/10.1016/j.ssc.2008.02.024
http://dx.doi.org/10.1038/nphys2412
http://dx.doi.org/10.1103/PhysRevLett.97.066402
http://dx.doi.org/10.1016/j.ssc.2006.07.016
http://dx.doi.org/10.1126/science.1177980
http://dx.doi.org/10.1103/PhysRevLett.86.2918
http://dx.doi.org/10.1088/1751-8113/43/21/213001
http://dx.doi.org/10.1103/PhysRevB.85.073105
http://dx.doi.org/10.1103/PhysRevB.85.073105
http://dx.doi.org/10.1080/014680398244867
http://dx.doi.org/10.1080/014680398244867
http://dx.doi.org/10.1209/0295-5075/27/9/003
http://dx.doi.org/10.1364/OL.20.002009
http://dx.doi.org/10.1103/PhysRevLett.110.035303
http://dx.doi.org/10.1103/PhysRevLett.110.035303
http://dx.doi.org/10.1111/j.1467-9590.2009.00430.x
http://dx.doi.org/10.1364/OE.18.022393
http://dx.doi.org/10.1364/OE.19.017852
http://dx.doi.org/10.1103/PhysRevLett.95.204101
http://dx.doi.org/10.1103/PhysRevLett.95.204101
http://dx.doi.org/10.1103/PhysRevLett.101.044101
http://dx.doi.org/10.1103/PhysRevLett.101.044101
http://dx.doi.org/10.1364/OL.33.000524
http://dx.doi.org/10.1088/1464-4266/2/3/322
http://dx.doi.org/10.1002/andp.19003060312
http://dx.doi.org/10.1007/BF01391052
http://dx.doi.org/10.1103/PhysRevB.26.1549
http://dx.doi.org/10.1103/PhysRevB.26.1549
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.036403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.036403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.036403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.036403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.036403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.036403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.036403
http://dx.doi.org/10.1063/1.1749541
http://dx.doi.org/10.1088/0953-4075/37/7/063
http://dx.doi.org/10.1007/s100510051026
http://dx.doi.org/10.1103/PhysRevLett.93.126602
http://dx.doi.org/10.1063/1.2183811
http://dx.doi.org/10.1103/PhysRevLett.112.140405
http://dx.doi.org/10.1103/PhysRevLett.112.140405

