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We study the Josephson junction mediated by the quantum spin Hall edge states and show that electron-
electron interactions lead to a dissipationless fractional Josephson effect in the presence of time-reversal
symmetry. Surprisingly, the periodicity is 8π, corresponding to a Josephson frequency eV=2ℏ. We estimate
the magnitude of interaction-induced many-body level splitting responsible for this effect and argue that it
can be measured by using tunneling spectroscopy. For strong interactions we show that the Josephson
effect is associated with the weak tunneling of charge e=2 quasiparticles between the superconductors. Our
theory describes a fourfold ground state degeneracy that is similar to that of coupled “fractional”Majorana
modes but is protected by time-reversal symmetry.
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Topological superconductivity is a topic of current
interest because of its potential for providing a method
for storing and manipulating quantum information [1–4].
The simplest implementation of this proposal uses the
Majorana modes predicted to occur at the end of a 1D
topological superconductor. A promising route to achieve
this is to employ a proximity effect device that combines an
ordinary superconductor with a material that has a single
helical band [5–12]. There has been progress towards this
goal by using InSb quantum wires [13] and using the edge
states of quantum spin Hall (QSH) insulators in HgTe [14]
and InAs/GaSb [15] quantum wells.
One of the most basic consequences of topological

superconductivity is the fractional Josephson effect
[1,6,16–18]. This occurs due to the coherent tunneling
of electrons between the Majorana end states of two 1D
topological superconductors. A pair of Majorana modes
defines two states that are split by the electron tunneling
and are distinguished by their local fermion parity.
Advancing the phase difference ϕ across the junction by
2π interchanges the two states, which leads to a 4π
periodicity for each state as an adiabatic function of ϕ.
This resembles a “Z2 pump” [18,19] and may be referred to
as a “Z2 fractional Josephson effect.” It gives rise to an ac
Josephson effect with half the conventional Josephson
frequency, provided scattering from thermally excited bulk
quasiparticles is sufficiently suppressed.
The fractional Josephson effect was originally proposed

by Kitaev [1] using a model 1D spinless p wave super-
conductor. It was later found that similar physics can arise
for a Josephson junction mediated by the QSH edge states
[6,18]. In this case, a weakly coupled junction is formed by
introducing a magnetic gap to the edge states between the
superconductors, creating two weakly coupled Majorana
modes at the superconductor-magnet interfaces. For this
construction it was essential that the time-reversal sym-
metry (TRS) be explicitly broken in the junction region to

produce a dissipationless Josephson effect. If it is not, then
the Andreev bound states (ABSs) do not decouple from
bulk states, and bulk quasiparticles are necessarily gen-
erated as ϕ is adiabatically advanced.
In this Letter, we will show that electron-electron

interactions restore the time-reversal-invariant fractional
Josephson effect but lead to an 8π periodicity of the
Josephson current, which we refer to as a Z4 fractional
Josephson effect. We estimate the magnitude of the
interaction-induced splitting in the many-body excitation
spectrum and propose a method for detecting this effect by
using tunneling spectroscopy. When the QSH edge states
between the superconductors are ungapped, the junction is
necessarily strongly coupled. However, if the edge states
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FIG. 1 (color online). (a) The schematic of a Josephson junction
mediated by the QSH edge states. (b) The single-particle
spectrum Es of the junction, with Kramers degeneracies at ϕ ¼
0 and π. (c) The many-body spectrum Em associated with (b),
including a fourfold degeneracy at ϕ ¼ π. (d) The fourfold
degeneracy is lifted by electron-electron interactions, leading
to an 8π periodicity of the four lowest states. The solid and
dashed lines reflect the PHS in (b) and distinguish opposite
fermion parity in (c) and (d).
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acquire a gap, we show that the Z4 Josephson effect is
associated with the tunneling of charge e=2 quasiparticles.
In this weak coupling limit, the junction has a fourfold
ground state degeneracy that is lifted with a characteristic
pattern by tunneling. The interface between the gapped
edge states and the superconductor exhibits a domain wall
excitation, which is analogous to the “fractional”Majorana
mode [20–26] and related to a Z4 parafermion. However,
there are also important differences with the parafermion
theory, which we will clarify.
We begin with the model for a Josephson junction at the

edge of a QSH insulator [6], described by the Bogoliubov–de
Gennes Hamiltonian

HBdG ¼ τzð−iℏvFσz∂x − μÞ þ Δ1ðxÞτx þ Δ2ðxÞτy; ð1Þ

where ~σ (~τ) are Paulimatrices in spin (particle-hole) space and
Δ ¼ Δ1 þ iΔ2 is the proximity-induced pair potential. We
suppose that Δðx < −L=2Þ ¼ Δ0, Δðx > L=2Þ ¼ Δ0eiϕ,
and Δðjxj < L=2Þ ¼ 0. The single-particle spectrum is
shown in Fig. 1(b). The ABSs at the phase difference
ϕ ¼ 0 and π are necessarily Kramers degenerate. This leads
to a breakdown of the ac Josephson effect, because as ϕ
advances quasiparticles pass through the Kramers degener-
acies and end up above the bulk gap leading to dissipation.
To go beyond the model where the junction is non-

interacting, we consider in Fig. 1(c) the many-body spectrum
associated with Fig. 1(b). The lowest state in Fig. 1(c)
corresponds to the many-body ground state with all positive
(negative) energy single-particle states in Fig. 1(b) empty
(occupied), whereas higher states are excitations with one or
more quasiparticles excited, taking into account the intrinsic
particle-hole symmetry (PHS) in Fig. 1(b). The local fermion
parity of each many-body state is indicated by the solid and
dashed lines, and due to the fermion parity anomaly their
identity switches when ϕ advances by 2π. Figure 1(c)
exhibits several degeneracies. The twofold degeneracies at
ϕ ¼ 0 and π are Kramers degeneracies, protected by TRS.
The twofold degeneracy atϕ ¼ π labeled by an open circle is
even robust against TRS breaking, since it involves two states
with opposite fermion parity. The fourfold degeneracy at
ϕ ¼ π labeled by a solid circle reflects the degeneracies of
both E ¼ 0 and E ≠ 0 single-particle states. However, this
fourfold degeneracy is an artifact of the noninteracting
electron approximation. In the presence of electron-electron
interactions, it splits into two Kramers doublets, each of
which has two many-body states with opposite fermion
parity. There are thus only four low-energy states that mix
among themselves as ϕ is adiabatically advanced, as indi-
cated in Fig. 1(d). Starting from the ground state at ϕ ¼ 0, it
takes four cycles to return to the original ground state, leading
to an 8π periodicity in the current phase relation. In the
presence of a bias voltage V, this leads to an ac Josephson
effect with a fundamental frequency ωJ ¼ eV=2ℏ, i.e., one-
quarter of the conventional Josephson frequency.

To establish the splitting at ϕ ¼ π and estimate its
magnitude, we introduce a model H ¼ H0 þHI , where
H0 is a second quantized version of Eq. (1) and

HI ¼ λ

Z
L=2

−L=2
nðxÞ2: ð2Þ

Here nðxÞ ¼ P
σc

†
σcσ is the charge density. We focus on the

four degenerate excited states at ϕ ¼ π and evaluate the
splitting to first order in λ. To proceed, we now determine
the wave functions of single-particle ABSs and then
evaluate the matrix elements of HI between the degenerate
many-body states.
The single-particle ABSs are found by solving Eq. (1)

subject to the appropriate matching conditions at x¼�L=2.
For ϕ ¼ π, the energy eigenstates are Kramers pairs ψn;σ
indexed by σ ¼ �1, the eigenvalues of σz. The energy
eigenvalues En satisfy

tan ĒnL̄ ¼ −Ēnð1 − Ē2
nÞ−1=2; ð3Þ

where the bars denote dimensionless quantities Ēn ≡
En=Δ0 and L̄≡L=ξ¼LΔ0=ℏvF. For −π<2ðL̄−NπÞ≤π,
there are N pairs of ABSs in addition to the Majorana
Kramers pair at E0 ¼ 0. The wave functions ψn;σ ¼
ðun;σ; vn;σÞT with En ≥ 0 are

�
un;σ
vn;σ

�
¼ Aneiσμ̄ x̄−

ffiffiffiffiffiffiffiffi
1−Ē2

n

p
jx̄−l̄ðxÞj

� ð−1ÞneiσĒnl̄ðxÞ

−iσe−iσĒnl̄ðxÞ

�
; ð4Þ

where l̄ðxÞ is x=ξ for jxj < L=2 and sgnðxÞL̄=2 for
jxj > L=2. The normalization factor satisfies

A−2
n ¼ 2Lþ 2ξð1 − Ē2

nÞ−1=2: ð5Þ
PHS and TRS imply that states with E−n ¼ −En are related
by ψ−n;σ ¼ −iτyψn;σ (n > 0). The corresponding second
quantized operators obey b−n;σ ¼ σb†n;−σ (n > 0) and
b0;þ ¼ ib†0;−. It follows that the electron annihilation
operator may be written as

cσðxÞ ¼ u0;σb0;σ þ
X
n>0

un;σbn;σ − vn;σσb
†
n;−σ: ð6Þ

We assume L̄ > π=2 so that there is at least one pair of
excited (Es ≠ 0) ABSs at ϕ ¼ π. The four degenerate many-
body states are jμ; σi ¼ b†1;σjμi0,where jμi0 is themany-body

ground state with b†n;σbn;σ ¼ 0 (n > 0) and ð−1Þb†0;þb0;þ ¼ μ.
For these four states μ ¼ �1, the eigenvalues of μz, distin-
guishes states with different fermion parity. Under time
reversal [27], Θjμ; σi ¼ σj − μ;−σi and Θ may be repre-
sented by μxσyK. The most general interaction consistent
with TRS and fermion parity conservation then has the form
hI ¼ m0 þ ~m · ~σμz [28]. This splits the four states into two
Kramers pairs with E ¼ m0 � j ~mj.
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By plugging Eqs. (4) and (6) into the density-density
interactions (2), we find that mx ¼ my ¼ 0 and

2mz ¼
λ

ξ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Ē2
1

p þ L̄

�
−1
: ð7Þ

When L̄ ∼ 2.6, the level splitting at ϕ ¼ π can reach
its largest amplitude 2mz ∼ 0.23λ=ξ. Physically, λ ¼
ðe2=ϵÞ logðRs=RÞ, where ϵ is the dielectric constant; R
and Rs are, respectively, the penetration length and the
screening radius of the edge states. For ϵ ¼ 20,
ξ ¼ 100 nm, and logðRs=RÞ ¼ 1, the splitting can reach
0.17 meV, which is comparable to Δ0. We also note that, in
the presence of impurities, TRS allows scattering such as
ðc†↑c↑c†↓∂xc↑ − c†↓c↓c

†
↑∂xc↓Þ þ H:c., yielding to nonzero

mx;y. Estimating mx;y is beyond the scope here, and we
assume that they are in the same order of mz.
Observing the fractional Josephson effect is complicated

by scattering from thermally excited bulk quasiparticles,
which can cause the system to relax to the ground state
before a cycle is completed. It has been suggested that
qualitative features of the Z2 Josephson effect remain
for equilibrium critical current measurements [29]. Here
we consider a different method to demonstrate the Z4

Josephson effect by probing the phase dependence of the
tunneling spectrum of ABSs at the junction.
Consider a ring geometry where the phase difference

ϕ across the junction is controlled by a weak applied
magnetic field. We propose tunneling into the junction
region by using an additional tunnel contact to probe the
discrete many-body excitation spectrum. This approach has
been successfully used [30,31] to probe the ABSs of 1D
superconductor-nanowire-superconductor junctions in sim-
ilar geometries. At low temperature, a weakly coupled
tunnel junction probes the local tunneling density of states
(DOS), dI=dV ∝ ρðEt ¼ eVÞ with

ρðEtÞ ¼
X
N;σ

jhNjc†σj0ij2δðEt − EN
m þ E0

mÞ; ð8Þ

where c†σ is the creation operator for an electron with spin σ
and jNi are the many-body states at energy EN

m in Fig. 1(d).
Importantly, there is a selection rule dictating that the
excited state jNi must have the opposite fermion parity
from the ground state j0i.
In Fig. 2, we plot the zero temperature peaks in the

tunneling DOS based on the spectra in Fig. 1. dI=dV must
consist of peaks at eV ¼ EN

m − E0
m. Figure 2(a) shows the

tunneling spectrum in the noninteracting electron approxi-
mation. Figure 2(b) shows the spectrum when electron-
electron interactions eliminate the many-body degeneracies.
Figure 2(c) shows the qualitative spectrum when TRS
is strongly broken. There are four important features.
(i) Figures 2(a)–2(c) all share a singularity in which the
lowest peak goes to zero. This is a consequence of the Z2

Josephson effect, which requires a level crossing in the

ground state when ϕ is advanced by 2π. Since this crossing
changes the fermion parity, it is visible in tunneling
spectroscopy. TRS fixes this singularity at ϕ ¼ π, whereas
with broken TRS it can shift. (ii) In the higher excited levels,
similar singularities persist even with interactions, whereas
with broken TRS they may disappear. (iii) Figure 2(a)
exhibits a degeneracy in the tunneling peaks at ϕ ¼ π,
which is split in Fig. 2(b) by 2mz in Eq. (7) due to
interactions. (iv) Figures 2(a) and 2(b) both have the same
Kramers degeneracy in the lowest two peaks at ϕ ¼ 0,
which is lifted in Fig. 2(c) where TRS is broken. Taken
together, these four features would provide compelling
evidence for the excitation spectrum responsible for the
Z4 Josephson effect.
The presence of a weak magnetic field that controls ϕ

will break TRS and split the Kramers degeneracies. The
magnitude of the Zeeman splitting is EZ ∼ gμBB. Using
g ≤ 1 appropriate for the QSH edge states [32,33], we find
EZ≤0.058×B½T�meV, which is negligible for B<10mT
relevant for the related experiments.
The Z2 fractional Josephson effect can be understood in

a weak coupling limit in which an electron—or half a
Cooper pair—coherently tunnels between two Majorana
bound states. It is natural to ask whether there is a similar
weak coupling version of the time-reversal-invariant Z4

fractional Josephson effect. For weak interactions, this is
not possible, because TRS prevents an energy gap from
opening in the QSH edge state between the superconduc-
tors. However, strong interactions can lead to an energy gap
[34,35]. We now show that in this case the Josephson effect
is mediated by the tunneling of charge e=2 quasiparticles.
The domain wall at the interface between the gapped edge
state and the superconductor behaves as a “fractional”
Majorana mode, which is related to a Z4 parafermion.
To describe the QSH edge state with strong interactions,

we adopt a bosonized representation in which the electron
creation operators are c†R↑ðL↓Þ ∝ eiðφ�θÞ and the bosonic

variables satisfy ½φðxÞ; θðx0Þ� ¼ iπΘðx − x0Þ. TRS forbids
the single-particle backscattering term cos 2θ, which would
lead to a magnetic energy gap. However, the pair back-
scattering term cos 4θ respects TRS and will be present—
either as a momentum-conserving process if μ ¼ 0 or as an
impurity scattering process. We thus consider the
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FIG. 2 (color online). Phase dependence of the energies of
peaks in the tunneling DOS. In the noninteracting case, (a) shows
a degeneracy at ϕ ¼ π that is lifted in (b) by interactions.
Breaking TRS lifts both degeneracies in (a), as shown in (c).
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Hamiltonian H ¼ H0 þHI þHθ þHφ for the QSH edge
state, where

H0 þHI ¼
vF
2π

½ð∂xθÞ2 þ ð∂xφÞ2� þ
λðxÞ
π2

ð∂xθÞ2; ð9Þ

with λðxÞ ¼ λΘðjxj − L=2Þ. The superconducting proxim-
ity effect and the pair backscattering are described by

Hφ ¼ u0

�
Θ
�
−
L
2
− x

�
cos2φþΘ

�
x−

L
2

�
cosð2φ− ϕÞ

�
;

Hθ ¼ v0Θ
�
L
2
− jxj

�
cos4θ: ð10Þ

Hφ introduces a superconducting energy gap into the QSH
edge states coupled to the superconductors. For weak
interactions Hθ is irrelevant, but Hθ will flow to strong
coupling and open a gap for λ > 4.7vF for μ ¼ 0 (corre-
sponding to Luttinger parameter g < 1=2). For impurity
scattering, states are localized for λ > 9.6vF (g < 3=8)
[36]. It is simplest to analyze the large v0 limit, where θ is
pinned in the deep wells of the cosine potential, depicted in
Fig. 3(a). This describes a magnetic state that spontane-
ously breaks TRS. The presence of the cos 2φ introduces
2π jumps in θ that effectively make θ an angular variable
defined modulo 2π, reflecting the condensation of Cooper
pairs. There are thus four distinct minima of the cos 4θ
potential leading to a fourfold degenerate ground state for
the junction. When v0 is finite, quantum tunneling between
the minima will couple the four states, lifting their
degeneracy with a characteristic pattern. A tunneling event
from θ ¼ nπ=2 to θ ¼ ðnþ 1Þπ=2 can be interpreted as the
tunneling of a domain wall between the two degenerate
magnetic states, which is associated with a charge e=2

[37–39]. This has the effect of flipping the magnetization
of the junction region while transferring a charge e=2.
If jni denotes the state θ ¼ nπ=2 (with n defined

modulo 4), the Hamiltonian in the degenerate subspace is

H¼
X4
n¼1

ð−te=2eiðϕ=4Þjnihnþ1j− teeiðϕ=2Þjnihnþ2jþH:c:Þ;
ð11Þ

with an energy spectrum Em¼1;2;3;4¼−2te=2cos½ðϕ−2πmÞ=
4�−2tecos½ðϕ−2πmÞ=2�. Here te=2 is the amplitude for
tunneling a single e=2 quasiparticle, whereas te is the
amplitude for tunneling charge e. In general, there will also
be a contribution from tunneling charge 2e Cooper pairs
across the junction, which only gives an overall ϕ-dependent
shift to all four energy levels. In Figs. 3(b) and 3(c), we
show EmðϕÞ in the cases where tunnelings are dominated by
te ¼ 0 and te ¼ 2te=2, respectively. They share a pattern
of fermion parity degeneracies (at ϕ ¼ π) and Kramers
degeneracies (at ϕ ¼ 0) that guarantee an 8π periodicity
when ϕ is advanced adiabatically. The tunneling DOS
features in Fig. 2(b) also apply here.
Equation (10) is similar to models that have recently

been introduced to describe “fractional”Majorana modes in
superconductor–fractional quantum Hall insulator struc-
tures [20–26]. These models share competing terms cospθ
and cos 2φ with Eq. (10), analogous to the order and
disorder variables of a Zp clock model [40]. For p ¼ 3, the
critical point of the Z3 clock model is described by the Z3

parafermion conformal field theory [41]. In this case, an
interface between regions dominated by cospθ and by
cos 2φ binds a local Z3 parafermion, which is related via a
similar construction [42] to the quasiparticles of the Read-
Rezayi state [43]. The p ¼ 4 case of interest here is slightly
different. The Z4 clock model and the Z4 parafermion
model are not equivalent but are rather two different points
in the more general Ashkin-Teller model. Nonetheless, the
domain wall defines an excitation similar to a Z4 paraf-
ermion, and a pair of such defects encodes a fourfold
degeneracy. The domain walls that occur in superconduc-
tors coupled to fractionalized states with charge e=m
quasiparticles involve a similar Z2m clock model (which
also differs from the parafermion model) and lead to a Z2m
fractional Josephson effect. Despite the mathematical
similarity, there is an important difference between
Eq. (10) and the models based on fractionalized states
[20–26]. In the latter case, the ground state degeneracy
defined by a pair of domain walls is a topological
degeneracy that cannot be lifted by any local perturbation.
By contrast, half of the fourfold degeneracy defined by the
Josephson junction here is a local degeneracy that can be
lifted by a Zeeman field h cos 2θ. In Fig. 3, this eliminates
the crossings between states with the same parity. The
fourfold degeneracy here, however, is a symmetry-
protected degeneracy that is guaranteed as long as TRS
is not violated.
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FIG. 3 (color online). (a) Strong interactions pin the charge
between the superconductors and lead to a fourfold ground state
degeneracy. Charge e=2 or charge e tunneling processes lift
the degeneracy, with an 8π periodicity in ϕ, as shown in (b) for
te ¼ 0 and (c) for te ¼ 2te=2. Solid and dashed lines correspond to
states with opposite fermion parity.
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