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The low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio
framework that encompasses the 4Heþ nþ n three-cluster dynamics characterizing its lowest decay
channel. This is achieved through an extension of the no-core shell model combined with the resonating-
group method, in which energy-independent nonlocal interactions among three nuclear fragments can be
calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio
many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-
body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange
mesh. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the
known Jπ ¼ 2þ resonance as well as a result consistent with a new low-lying second 2þ resonance recently
observed at GANIL at 2.6 MeVabove the 6He ground state. We also find resonances in the 2−, 1þ, and 0−

channels, while no low-lying resonances are present in the 0þ and 1− channels.
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Introduction.—Nuclear systems near the drip lines, the
limits of the nuclear chart beyond which neutrons or
protons start dripping out of nuclei, offer an exciting
opportunity to advance our current understanding of the
interactions among nucleons, so far mostly based on the
study of stable nuclei. This is not a goal devoid of
challenges. Experimentally, the study of these rare nuclei
with atypical neutron-to-proton ratios is challenged by their
short half-lives and minute production cross sections. A
major stumbling block in nuclear theory has to deal with
the low breakup thresholds, which cause bound, resonant,
and scattering states to be strongly coupled. Particularly
arduous, in this respect, are those systems for which the
lowest threshold for particle emission is of the three-body
nature, such as 6He, which breaks into an α particle (4He
nucleus) and two neutrons at the excitation energy of
0.975 MeV. Aside from a narrow resonance characterized
by spin parity Jπ ¼ 2þ, located at 1.8 MeV above the
ground state (g.s.), the positions, spins, and parities of the
excited states of this nucleus are still under discussion.
Experimentally, the picture is not clear. Proton-neutron
exchange reactions between two fast colliding nuclei
produced resonantlike structures around 4 [1] and 5.6
[2] MeV of widths Γ ∼ 4 and 10.9 MeV, respectively, as
well as a broad asymmetric bump at ∼5 MeV [3], but
disagree on the nature of the underlying 6He excited
state(s). While the structures of Refs. [1,3] are explained
as dipole excitations compatible with oscillations of the
positively charged 4He core against the halo neutrons, that
of Ref. [2] is identified as a second 2þ state. More recently,
a much narrower 2þ (Γ ¼ 1.6 MeV) state and a J ¼ 1
resonance (Γ ∼ 2 MeV) of unassigned parity were popu-
lated at 2.6 and 5.3 MeV, respectively, with the two-neutron

transfer reaction 8Heðp; 3HÞ6He� [4]. On the theory side,
several predictions, all incomplete in different ways,
suggest a 2þ1 , 2

þ
2 , 1

þ, 0þ sequence of levels above the
first excited state but disagree on the positions and
widths. Those from six-body calculations with realistic
Hamiltonians [5–7] were obtained within a bound-state
approximation and cannot provide any information about
the widths of the levels. Vice versa, those from three-body
models [8,9], from microscopic three-cluster models
[10,11], or from calculations hinging on a shell-model
picture with an inert 4He core [12,13] can describe the
continuum but were obtained using schematic interactions
and a simplified description of the structure. In this Letter,
we present the first ab initio calculation of the 4Heþ nþ n
continuum starting from a nucleon-nucleon (NN) interaction
that describes two-nucleon properties with high accuracy.
Formalism.—In the no-core shell model combined with

the resonating-group method (NCSM/RGM), A-body
bound and/or scattering states characterized by three-
cluster configurations are described by the wave function

jΨJπTi ¼
X

ν

ZZ
dxdyx2y2ÂνjΦJπT

νxy iGJπT
ν ðx; yÞ; ð1Þ

in terms of a set of unknown continuous amplitudes
GJπT

ν ðx; yÞ and (a1, a2, a3) ternary cluster channels

jΦJπT
νxy i

¼
h
ðja1α1Iπ11 T1iðja2α2Iπ22 T2ija3α3Iπ33 T3iÞðs23T23ÞÞðSTÞ

×ðYlx
ðη̂23ÞYlyðη̂1;23ÞÞðLÞ

iðJπTÞδðx−η23Þ
xη23
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built within a translation-invariant harmonic oscillator
(HO) basis from NCSM eigenstates of each of the
three clusters ja1α1Iπ11 T1i, ja2α2Iπ22 T2i, and ja3α3Iπ33 T3i
and antisymmetrized with an appropriate operator Âν

to exactly preserve the Pauli exclusion principle. In
Eq. (2), a1, a2, and a3 (with a1 þ a2 þ a3 ¼ A, and
a1 corresponding to A − a23 in Ref. [14]) indicate the
mass numbers of the three clusters having angular
momentum, parity, isospin, and energy quantum numbers
Iπii Ti and αi (i ¼ 1, 2, 3). Each channel is identified by
its total angular momentum, parity, and isospin (JπT) and
an index ν specifying all other quantum numbers, i.e., ν¼
fa1α1Iπ11 T1;a2α2I

π2
2 T2;a3α3I

π3
3 T3;s23T23SlxlyLg. Further,

~η1;23 ¼ η1;23η̂1;23 and ~η23 ¼ η23η̂23 are relative coordinates
proportional, respectively, to the displacement between
the center of mass (c.m.) of the first cluster and that of
the residual two fragments, and to the distance between the
c.m.’s of clusters 2 and 3.
The continuous amplitudes GJπT

ν ðx; yÞ are related to the
relative motion wave functions among the clusters

χJ
πT

ν ðx; yÞ ¼ ½N 1=2G�JπTν ðx; yÞ

¼ 1

ρ5=2

X

K

uJ
πT

νK ðρÞϕlx;ly
K ðαÞ; ð3Þ

which, introducing the hyperspherical coordinates
ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and α ¼ arctanðx=yÞ, can be expanded

over the complete set ϕ
lx;ly
K ðαÞ, the hyperangular

part of the hyperspherical harmonics Y
Klxly
LML

ðΩÞ ¼
ϕ
lx;ly

K ðαÞðYlxðη̂23ÞYlyðη̂1;23ÞÞðLÞML
. The unknown amplitudes

uJ
πT

νK ðρÞ are then found by solving the nonlocal hyper-radial
equations

X

Kν

Z
dρρ5H̄K0K

ν0ν ðρ0; ρÞ u
JπT
Kν ðρÞ
ρ5=2

¼ E
uJ

πT
K0ν0 ðρ0Þ
ρ05=2

; ð4Þ

where H̄K0K
ν0ν ðρ0; ρÞ ¼ ½N −1=2HN −1=2�K0K

ν0ν ðρ0; ρÞ is the
orthogonalized kernel obtained from the Hamiltonian
and overlap (or norm) matrix elements

HJπT
ν0ν ðx0; y0; x; yÞ ¼ hΦJπT

ν0x0y0 jÂν0HÂνjΦJπT
νxy i; ð5Þ

N JπT
ν0ν ðx0; y0; x; yÞ ¼ hΦJπT

ν0x0y0 jÂν0ÂνjΦJπT
νxy i; ð6Þ

after projection over the basis ϕ
lx;ly
K ðαÞ, and E is the total

energy. Equation (4) is solved with either bound- or
genuinely three-body scattering-state (i.e., no bound two-
body subsystems are present) boundary conditions by
means of the microscopic R-matrix method on a
Lagrange mesh [15–19]. For more details on the three-
cluster NCSM/RGM formalism, we refer the interested
reader to Ref. [14], where we first applied the approach to
the description of the ground state of 6He within a 4Heþ

nþ n basis (a2, a3 ¼ 1). Here, we apply the same
framework to the much more challenging problem of
the continuum of this system, for which the hyper-
radial wave function behaves asymptotically as
uJ

πT
Kν ðρÞ ∝ ½H−

KðκρÞδνν0δKK0 − SνK;ν0K0Hþ
KðκρÞ� (with H�

being the incoming and outgoing functions for neutral
systems [20], κ the wave number, and S the three-body
scattering matrix of the process). First, we present our
results and compare them to experiment. A discussion of the
uncertainty of our calculations as it relates to the conver-
gence with respect to the adopted model space will follow.
Results.—The present calculations are based on the

chiral next-to-next-to-next-to-leading order (N3LO) NN
[21] interaction softened via the similarity renormalization
group (SRG) to minimize the influence of momenta higher
than Λ ¼ 1.5 fm−1. This soft potential permits us to reach
convergence in the HO expansions within Nmax ∼ 13
quanta, the largest model space presently achievable. At
the same time, it also leads to a 4He g.s. energy [22,23] and
nþ 4He phase shifts [24] close to experiment despite the
omission of three-nucleon (3N) forces, which are beyond
the scope of this first ab initio study of the 4Heþ nþ n
continuum.
We further describe the 4He cluster only by its Iπ11 T1 ¼

0þ0 g:s: and ignore core polarization effects, which have
been estimated to account for ∼5% of the 6He binding
energy [14]. The inclusion of excited states of the core leads
to a (presently) unbearable increment of the computational
size of the problem. This will be overcome in the future by
coupling the present three-cluster model space with eigen-
states of the six-body system within the no-core shell model
with continuum [25,26].
We solve Eq. (4) for the Jπ ¼ 0�, 1�, 2� channels and

extract the corresponding phase shifts from the diagonal
elements of the three-body scattering matrix or from its
diagonalization, when large off-diagonal couplings are
present. A summary of the obtained low-lying attractive
eigenphase shifts is presented in Fig. 1. We have identified
several resonances. The lowest and sharpest appears in the
2þ channel around 1.25 MeV above the 4Heþ nþ n
threshold. An analysis of this resonance, corresponding
to the very well-known first excited state of 6He, shows that
it is dominated by 1S0 neutrons in an ly ¼ 2 relative motion
with respect to the 4He g.s. (S, lx ¼ 0; L, ly, K ¼ 2). A
second broader 2þ resonance emerges at ∼2.6 MeV, where
the prevalent picture is that of the halo neutrons with
aligned spins, moving relative to each other and to the core
in P wave (S, lx, L, ly ¼ 1; K ¼ 2). The same structure
also characterizes a 1þ resonance located at slightly higher
energy. Resonances also appear in the 2− and 0− channels,
dominated by S, lx, L ¼ 1 and ly ¼ 0 quantum numbers.
On the other hand, the rapid growth through 90° character-
istic of a resonance is not present in the 1− or in the 0þ

channels. Therefore, we cannot see any evidence of a low-
lying state that could be identified with the 1− soft dipole
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mode suggested in Refs. [1,3]. In addition, our results do
not support the presence of a low-lying 0þ monopole
resonance above the 1þ state reported by previous theo-
retical investigations of the 4Heþ nþ n continuum, in
which the 4He was considered as an inert particle with no
structure. These three-body calculations, performed within
the hyperspherical-harmonics basis [8,9,20,27] and with
the complex scaling method [28,29], obtained a similar
sequence of 2þ1 , 2þ2 , 1þ, and 0þ2 levels, but different
resonance positions and widths. (Only the first two 2þ
resonances were shown in Ref. [20].) Microscopic 4Heþ
nþ n calculations based on schematic interactions were
later reported in Refs. [10,11] but showed only results for
the 2þ1 narrow resonance and do not comment on a 0þ
excited state.
In Fig. 2, the energy spectrum of states extracted from

the resonances of Fig. 1 is compared to the one recently
measured at GANIL [4]. Our results are consistent with the
presence of the second low-lying narrow 2þ resonance
observed for the first time in this experiment. A J ¼ 1
resonance was also measured at 4.3 MeV; however, the
parity of such a state is not yet determined, and it is not
possible to univocally identify it with the 1þ resonance
found at 2.77 MeV in the present calculations. At the same
time, the energy dependence of the 1− eigenphase shifts of
Fig. 1(b) does not favor the interpretation of this low-lying
state as a dipole mode. We also predict two broader
negative-parity states not observed.

A thorough study of the convergence of the results with
respect to all parameters defining the size of our model
space was performed. These are the maximum value Kmax
of the hyperangular momentum in the expansion (3), the
size Nmax of the HO basis used to calculate the g.s. of 4He
and the localized parts of Eqs. (5) and (6), and finally, the
size Next ≫ Nmax of the extended HO basis used to
represent a delta function in the core-halo distance entering
the portion of the Hamiltonian kernel that accounts for the
interaction between the halo neutrons (see Eq. (39) of
Ref. [14]). In each case, the number of integration points
and the hyper-radius a used to match internal and asymp-
totic solutions within the R-matrix method on the
Lagrange mesh were chosen large enough to reach stable,
a-independent results. All calculations were performed
with the same ℏΩ ¼ 14 MeV frequency adopted for the
study of the 6He g.s. [14].
We first set the extended HO basis size to the value

(Next ¼ 70) we found to be sufficient for the 0þ g.s. energy
[14] and established that expansion (3) converges at
Kmax ¼ 19=20 for all negative- or positive-parity channels
except the 0þ, requiring Kmax ¼ 28. Examples of the
convergence pattern with respect to the HO basis size
Nmax are shown in Fig. 3. In general, convergence is
satisfactory at Nmax ¼ 13. For the higher-lying resonances,
this value is not quite sufficient but already provides the
qualitative behavior to start discussing the continuum
structure of the system. Next, we study the dependence
on Next, which regulates the range of the potential kernel.
Not unexpectedly, an increase of Next requires at the same
time incrementing the matching hyper-radius a needed to
reach the asymptotic region (we used values of up to 60 fm)
and Kmax, for which we used values as high as 40 in the 0þ
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channel. This limited the maximum value of Next used to
obtain our best (Nmax ¼ 13) results for the 0þ, 1−, and 2þ
results of Figs. 1 and 2 to 200, 110, and 90, respectively. As
shown in Fig. 4, the influence of Next is most pronounced
for attractive phase shifts in which the two neutrons are in
1S0 relative motion. There, the matrix elements of the nn
interaction from which the potential kernel is built (see
Eq. (39) of Ref. [14]) tend to be large. By far, the
dominating effect is the steeper onset of the 0þ attractive
eigenphase shifts that, as already noted in Ref. [20],
becomes more accentuated for (higher-lying) components
with K > 0. However, the qualitative results remain
unchanged. In particular, the value of Next has little or
no influence on the position and width of the resonances.
Also, the binding energy of the 0þ ground state of 6He
calculated in Ref. [14] remains unchanged within this much
larger model space. Finally, changing the value of the SRG
parameter used to soften the NN interaction to Λ ¼
1.8 fm−1 does not change the overall structure of the
continuum states. Bearing in mind that, with this harder
potential, convergence is slower, in each channel, we obtain
the same number of resonances with similar widths,
although somewhat shifted in energy (less than 1 MeV),
as shown in Fig. 3 for the 1−. This is evidence that the
softness of the potential used is not introducing any
spurious resonances and, therefore, verifies the reliability
of our results.
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Conclusions.—We calculated, for the first time within
an ab initio approach, the continuum spectrum of 6He
as a 4Heþ nþ n system. Given the low two-neutron sepa-
ration energy of this nucleus, including the three-cluster basis
in the calculation is essential. We found several resonances,
including the well-known narrow 2þ1 and the recently mea-
suredbroader2þ2 .Additional resonant states emerged in the2−

and1þ channels near the second 2þ resonance and in the 0− at
slightly higher energy. We found no evidence of low-lying
resonances in the 0þ and 1− channels. Therefore, our results
donot support the idea that theaccumulationofdipole strength
at low energy is originated by a three-body 1− resonance.
The inclusion of 3N forces and core polarization effects

through the coupling of 6He eigenstates within the no-core
shell model with continuum are underway and will increase
the predictive capability of the method. Finally, we expect
that complementing this approach with the use of two
integral relations derived from the Kohn variational prin-
ciple [30–32] will increase the range of systems that can be
described by limiting the distance for which the wave
function has to be calculated. This will be essential for the
study of 11Li within a 9Liþ nþ n basis.
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