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Recent in situ observations of interplanetary coronal mass ejections (ICMEs) found signatures of
reconnection exhausts in their interior or trailing edge. Whereas reconnection on the leading edge of an
ICME would indicate an interaction with the coronal or interplanetary environment, this result suggests that
the internal magnetic field reconnects with itself. In light of this data, we consider the stability properties of
flux ropes first developed in the context of astrophysics, then further elaborated upon in the context of
reversed field pinches (RFPs). It was shown that the lowest energy state of a flux rope corresponds to
∇ × B ¼ λB with λ a constant, the so-called Taylor state. Variations from this state will result in the
magnetic field trying to reorient itself into the Taylor state solution, subject to the constraints that
the toroidal flux and magnetic helicity are invariant. In reversed field pinches, this relaxation is mediated by
the reconnection of the magnetic field, resulting in a sawtooth crash. If we likewise treat the ICME as a flux
rope, any deviation from the Taylor state will result in reconnection within the interior of the flux tube, in
agreement with the observations by Gosling et al. Such a departure from the Taylor state takes place as the
flux tube cross section expands in the latitudinal direction, as seen in magnetohydrodynamic (MHD)
simulations of flux tubes propagating through the interplanetary medium. We show analytically that this
elongation results in a state which is no longer in the minimum energy Taylor state. We then present
magnetohydrodynamic simulations of an elongated flux tube which has evolved away from the Taylor state
and show that reconnection at many surfaces produces a complex stochastic magnetic field as the system
evolves back to a minimum energy state configuration.
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Coronal mass ejections (CMEs) are bursts of plasma
released from the solar corona into space, carrying as much
as 1016 grams of mass and 1030 ergs of energy out into the
interplanetary medium [1–3]. The ejecta usually are carried
out into the interplanetary medium [as an interplanetary
coronal mass ejection (ICME)] by closed magnetic fields,
typically described as having a flux rope geometry.When this
is observed as a smooth rotation in the magnetic field, the
ICME is classified as a magnetic cloud [4,5]. A coherent
helical flux rope geometry is not always observed, however,
as magnetic clouds comprise perhaps only 30% of observed
ICMEs [6].When directed towardsEarth,CMEs can generate
geomagnetic storms in the magnetosphere [7,8]. The most
energetic solar energetic particles (SEPs) may approach 80%
of the speed of light, yet themechanismwhich produces SEPs
remains an open question. Diffusive shock acceleration,
whereby particles gain energy by first order Fermi acceler-
ation at the shock which forms at the fore of a fast CME, has
been suggested as one such mechanism [9,10]. Alternatively,
impulsive SEP events observed in the interplanetary medium
have been correlated with flare acceleration in the lower
corona [9], perhaps suggestive of magnetic reconnection as a
SEP acceleration mechanism.

Consequently, magnetic reconnection plays a very
important role in CME dynamics, whether in the accel-
eration of SEPs, in triggering the flare event, or in driving
flux rope expansion. If the ICME flux rope were analogous
to Earth’s magnetosphere, one might expect to find these
reconnection events either at the leading edge where the
ICME magnetic field most directly interacts with the
interplanetary magnetic field (as in the magnetopause) or
in the trailing edge behind the flux rope where the magnetic
field pinches off (as in the magnetotail). Surprisingly
though, many of the reconnection exhausts observed by
the Ulysses spacecraft were found within the interiors of
ICMEs [11], regions characterized by counterstreaming
electrons and very low proton beta β ¼ 8πnT=B2.
In light of this result, we consider the disruptive role that

magnetic reconnection plays in fusion plasmas. It was in
this context that the linear tearing mode instability
that initiates reconnection was developed [12]. In 1974,
Taylor published a seminal Letter which linked reconnec-
tion events in reversed field pinches (RFPs) with
relaxation towards the minimum energy state (since
dubbed the Taylor state) which satisfies the force-free
condition
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∇ ×B ¼ λB; ð1Þ

with λ a constant [13]. That a force-free magnetic field
corresponds to the lowest energy state had already been
established in the context of astrophysical plasmas [14].
However, Taylor went further by suggesting that, for an
RFP geometry subject to the constraints that the toroidal
magnetic flux Φ ¼ R

A B · dn through a cross-sectional area
A and the magnetic helicity K ¼ R

V A · Bdτ (where A is
the magnetic potential) are invariant, then the relaxation of
the plasma back towards the Taylor state must be carried
out by reconnection [13,15]. This manifests itself in RFP
discharges as a sawtooth crash [16]. If the profile of the
safety factor q ¼ 2πrBz=LzBθ as a function of poloidal
radius r is equal to a rational value q ¼ m=n at some r
where m and n are integers, then one may transform into a
frame which rotates with the local magnetic field. In that
twisted frame, the magnetic field reverses across r and can
reconnect across that surface.
If we likewise treat the ICME as a flux rope, any

variation from the Taylor state will result in reconnection
within the interior of the ICME, in accord with the
observations of Gosling et al. [11,17]. The flux rope
may begin in a force-free Taylor state which satisfies
Eq. (1) when it first forms, as there is enough time for
the system to relax into its minimum energy state [18,19].
However, the ICME may not remain in such a state once it
erupts and begins to propogate outwards into the inter-
planetary medium, where the ICME and its environs
become highly dynamic systems. This departure from
the minimum energy Taylor state occurs in ICMEs through
the elongation of the flux tube in the latitudinal direction.
As the flux tube propagates through the interplanetary
medium, at distances far from the sun the azimuthal
magnetic field falls as 1=r, and so the magnetic flux must
expand. The radial velocity does not vary significantly over
the course of the propagation of the ICME, so the
expansion must occur in the latitudinal direction [20]. In
3D global MHD simulations of a Gibson-Low flux rope
model [21] for a CME, as the flux rope propagates through
the interplanetary medium, the ICME cross section
becomes elongated into an ellipse, with its major axis in
the latitudinal direction [22]. ICME flux ropes modeled
with this elongation yield better fits with observational data
than those which employ cylindrical symmetry [23–25].
We now show that such an elongation of the flux rope

cross section results in deviation from the Taylor state,
which will require reconnection in order to relax back
towards the minimum energy solution Eq. (1). Here, we
shall consider the solution in a Cartesian geometry, for
which we can easily apply the transformation x → x=2,
y → 2y to mimic the elongation of the flux rope in the
latitudinal direction x. We consider a domain of size Lx ×
Ly × Lz with conducting boundaries in x and y and periodic
in z. The Taylor state solution has the form

Bx ¼ −B0

ffiffiffiffiffi
Lx

Ly

s
cos

�
πx
Lx

�
sin

�
πy
Ly

�
; ð2Þ
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�
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�
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�
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�
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�
: ð4Þ

This solves Eq. (1) with λ ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=L2

x þ 1=L2
y

q
and

Bz0 ¼ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
x þ L2

y

LxLy

s
: ð5Þ

Figure 1 illustrates the Taylor state solutions described
by Eqs. (2)–(4) for (a) Lx ¼ Ly ¼ L ¼ 4, and (b) Lx ¼ 8,
Ly ¼ 2, Lz ¼ 4. The contour lines trace the poloidal
magnetic fields Bx and By in that plane. The flux function
ψ defined such that B ¼ ẑ ×∇ψ þ Bzẑ is given by ψ ¼
Bz=λ so that the magnetic field lines shown in Fig. 1 are
also contours of Bz in the x-y plane. Near the origin, a
Taylor expansion about x ¼ y ¼ 0 yields

ψ ≈
B0

π

ffiffiffiffiffiffiffiffiffiffi
LxLy

p �
1 −

π2

2L2
r2
�
; ð6Þ

under the transformation r2 ¼ α−2x2 þ α2y2, where L ¼ffiffiffiffiffiffiffiffiffiffi
LxLy

p
and α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Lx=Ly

p ¼ Lx=L ¼ L=Ly. The center of
our Cartesian flux tube approaches the more realistic case
of an elliptical flux tube near its center.
For this solution, one can calculate the two invariants

detailed in Taylor [15]:

(a)

(b)

FIG. 1. The in-plane magnetic field of the Taylor state solution
in Eqs. (2)–(3). The field lines also act as contour levels of Bz as
defined in Eq. (4).
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Φ ¼
Z
A
BzdA ¼ 4

π2
B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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: ð8Þ

Consider now a flux tube which initially satisfies
Lx ¼ Ly ¼ L, with toroidal flux Φ0 ¼ 4

ffiffiffi
2

p
B0L2=π2 and

magnetic helicity K0 ¼ B2
0L

3Lz=
ffiffiffi
2

p
π. Suppose some

dynamic process compresses the flux tube in y while
maintaining the total cross sectional area L2, say to
Lx ¼ αL, Ly ¼ L=α. With this aspect ratio, the minimum
energy Taylor state described by Eqs. (2)–(4) would now
have toroidal flux Φ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2=2þ 1=2α2

p
Φ0 and magnetic

helicity K1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2=2þ 1=2α2

p
K0. Since these quantities

are to remain invariant, the resultant flux tube, elongated in
one cross-sectional direction, will have deviated from the
Taylor state, and, consequently, reconnection will
commence.
To test this, we perform magnetohydrodynamic (MHD)

simulations of a magnetic flux rope using the F3D code
[26]. We utilize periodic boundaries in x and z but
conducting boundaries along the longer (when simulating
the elongated flux rope) y boundary. Thus, the simulation
domain is −Lx < x < Lx, −Ly=2 < y < Ly=2, and
−Lz=2 < z < Lz=2, which actually describes two flux
ropes horizontally adjacent to one another.
Equations (2)–(4) are still valid as the solution for this
system, but we shall focus solely on the flux rope in the
region −Lx=2 < x < Lx=2, −Ly=2 < y < Ly=2. The sys-
tem is initialized with Eqs. (2)–(4) with B0 ¼ 0.5, constant
temperature Ti ¼ Te, background density n0 ¼ 1, and no
explicit resistivity, although there is a fourth-order dis-
sipation term of the form μ4∇4. The system is normalized to
an arbitrary length scale L, velocities to the Alfvén speed
vA, and time to L=vA.
In our first simulation, we begin with the cylindrical

case: Lx ¼ Ly ¼ 8, Lz ¼ 4. Using the Taylor state equi-
librium defined by Eqs. (2)–(4), the solution remains in a
near steady-state equilibrium. Substituting for B0, Lx, and
Ly into Eq. (5), the amplitude of Bz is Bz0 ¼ 1=

ffiffiffi
2

p
.

In simulating the elliptical case, with Lx ¼ 16, Ly ¼ 4,
Lz ¼ 4, we again start with a magnetic field configuration
of the form described by Eqs. (2)–(4). However, we wish to
simulate a system which might have evolved from the
cylindrical case. In order to maintain the invariance of the
toroidal flux Φ and magnetic helicity K of the cylindrical
case, the amplitude of the elliptical flux rope must also have
amplitude Bz0 ¼ 1=

ffiffiffi
2

p
. Note, however, that this amplitude

differs from the amplitude of Bz which would satisfy the
force-free condition Eq. (1) for the Taylor state solution,
namely, Bz0 ¼

ffiffiffiffiffi
17

p
=4 as determined by Eq. (5) for the

parameters of the elliptical case.

Using instead Bz0 ¼ 1=
ffiffiffi
2

p
initializes the flux rope with

the same toroidal flux and magnetic helicity as the cylin-
drical case, but in a state which is out of magnetohydrody-
namic equilibrium because it does not satisfy Eq. (1). We
therefore start with a 2DMHD simulation with Eqs. (2)–(4),
using Bz0 ¼ 1=

ffiffiffi
2

p
in place of that calculated in Eq. (5). We

evolve the system in time and zero out the flows regularly
until it settles into an approximate equilibrium state. The
final state satisfies Eq. (1), but with a nonconstant λ as
shown in Fig. 2. As a result, when we extend this
configuration into a 3D system, even with no initial
variation in z save for an initial perturbation, we find that
this equilibrium is unstable. Figure 3 shows the magnetic
energy in the simulation domain as a function of time, which
shows that around 5% of the magnetic energy is dissipated
by reconnection by t ¼ 1000.
Figure 3 suggests that reconnection is strongest over the

period from t ¼ 200 to t ¼ 400. We now seek to find out
where reconnection is occurring. For this purpose, we use
puncture plots in which one traces a magnetic field line and
places a point in the x-y plane each time that field line
crosses a particular toroidal cross section (say, z ¼ 0).
Figure 4(a) shows the puncture plot of the initial configu-
ration, Fig. 4(b) at t ¼ 150, and Fig. 4(c) at t ¼ 200.
We see that five distinct islands formed in the vicinity of

the flux surface with x intercept x0 ¼ 3 [colored blue in
Figs. 4(a)–4(c)]. This result matches well the expectation
from the profile of the safety factor q in the initial
configuration in Fig. 5, which shows that the flux surface
with q ¼ 5 has x intercept x0 ≈ 2.8. Further out in Fig. 4(a)
at x0 ≈ 6.0, we also find five islands (in orange).
Comparing with Fig. 5, we see that these islands corre-
spond to the q ¼ 5=2 rational surface. The orange flux

FIG. 2 (color online). The equilibrium state for the Lx ¼ 16,
Ly ¼ 4 case which satisfies Eq. (1) but only for nonconstant λ.
The color bar shows λ ¼ 4πJ ·B=B2, while contour lines depict
the in-plane magnetic field Bx − By, as contours of the flux
function ψ .

FIG. 3. The total magnetic energy in the simulation of the
Lx ¼ 16, Ly ¼ 4 flux tube as a function of time.
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surface in Fig. 4(b) has broken up due to its interaction with
the q ¼ 3 island. The flux surface near x0 ¼ 5 has
developed three magnetic islands (in green), corresponding
to the q ¼ 3 rational surface at x0 ≈ 5.5 in Fig. 5. Likewise,
we find that nine magnetic islands form near x0 ≈ 4.0,
corresponding to the q ¼ 9=2 rational surface in Fig. 5.
However, by the time we arrive at Fig. 4(c), we find that
most of these islands have broken up, although remnants of
the q ¼ 5 and q ¼ 3 islands are recognizable.
The change in magnetic topology coupled with the loss

of magnetic energy in Fig. 3 indicate that reconnection has
taken place at each of these rational surfaces. Figure 4
foreshadows the eventual fate of this flux tube: a stochastic
magnetic field with a scattered puncture plot that has lost
much of its original helical structure.

Although these simulations are an idealization of a true
ICME flux rope, the removal of these idealizations only
reinforces the stochastic nature of the magnetic field. For
instance, the interplanetary plasma is essentially collision-
less so that a kinetic treatment will ultimately be needed.
In the case of reconnection with a guide field the
development of secondary magnetic islands [27,28] leads
to a highly turbulent system [29]. This dynamic is further
reinforced by fully 3D reconnection simulations in which
secondary instabilities generate three-dimensional flux
ropes [30]. Even just within a fluid context, the very
high Lundquist numbers (S > 1014) in the solar wind
reside in the plasmoid-unstable regime [31–33]. Our
simulations are already nonlaminar, even in a low
Lundquist number fluid simulation, so the removal of
these idealizations would only further underscore our
results. One might also consider that the ICME flux rope
will not be periodic in z but have footpoints anchored at
the solar surface. Nevertheless, if the ICME propagation
speed exceeds the local fast mode speed, then the interior
of the flux tube cannot know about the footpoint
boundaries. The flux tube length is essentially infinite,
at which limit the separation between rational surfaces
goes to zero. Our flux tube is long enough to simulate this
effect since the rational surfaces are sufficiently close
together to overlap in Fig. 4(c).
The results of this study are important for understanding

the dynamics of interplanetary coronal mass ejections.
They explain the observational data that reconnection is
observed most frequently in the interior of the flux tubes
by Gosling et al. [11,17]. If reconnection begins early
enough in the life of the CME, then by 1 AU we might find
that the structure lacks the helical flux rope configuration
characteristic of magnetic clouds. This has been seen in
many of the ICMEs observed at 1 AU, some of which
observationally seem to show a helical flux rope structure,
but as many as 70% of which do not [6]. In light of this
Letter, current modeling techniques for mapping out the
ICME flux rope structure as a helical flux rope may be
overly simplistic.
The presence of reconnection sites within ICMEs could

also be a source of SEP acceleration and lead to turbulence,
both important topics for future research. The time scale for
the degradation of the flux within the ICME will depend on
such factors as the elongation aspect ratio (a measure of the
variation from the Taylor state) and the reconnection rate.
The former can be determined from observations, which
suggest aspect ratios between 3 in 6, comparable to the
aspect ratio of 4 in these simulations [24,25]. The latter will
ultimately require a kinetic treatment, as collisionless
physics would make reconnection fast enough to allow
these processes to occur in the ICME between its ejection
and 1 AU.

(a)

(b)

(c)

FIG. 4 (color online). Puncture plots at (a) t ¼ 50 and
(b) t ¼ 200. Note that (b) is a zoom into −4 < x < 4, −1 < y <
1 to emphasize the structure in that region, and each color
corresponds to the punctures of a unique flux surface. Each flux
surface is traced starting from its x intercept at x ¼ 1; 2;…; 7; i.e.,
the black puncture points correspond to a flux surface traced from
x ¼ 1, y ¼ 0, the violet at x ¼ 2, y ¼ 0, etc.

FIG. 5. The safety factor profile as a function of the x intercept
x0 of a given flux surface. The diamond markers denote rational
flux surfaces highlighted in Fig. 4: those with q ¼ 5 at x0 ≈ 2.8,
q ¼ 9=2 at x0 ≈ 4.0, q ¼ 3 at x0 ≈ 5.5, and q ¼ 5=2 at x0 ≈ 6.0.
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