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We study mode competition in a multimode “phonon laser” comprised of an optical cavity employing a
highly reflective membrane as the output coupler. Mechanical gain is provided by the intracavity radiation
pressure, to which many mechanical modes are coupled. We calculate the gain and find that strong
oscillation in one mode suppresses the gain in other modes. For sufficiently strong oscillation, the gain
of the other modes actually switches sign and becomes damping, a process we call “anomalous cooling.”
We demonstrate that mode competition leads to single-mode operation and find excellent agreement with
our theory, including anomalous cooling.
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Introduction.—While the laser was invented more than
five decades ago, its acoustic analog has only recently been
realized. Following the observation of phonon amplifica-
tion in microwave-pumped ruby [1] in 1961 came the
suggestion of “phonon lasing.” Subsequent work in ruby
studied the emission spectrum of phonon generation [2]
and multimode processes [3]. Alternative platforms for a
phonon laser were studied as well, including experimental
work with optically pumped heterostructures [4] and
theoretical studies of electrically pumped heterostructures
[5,6]. Electrically pumped phonon emission was observed
in a semiconductor superlattice [7], and the amplification
and spectral narrowing characteristic of stimulated emis-
sion were demonstrated [8]. In parallel, resonant cavities
for phonons in semiconductor heterostructures were real-
ized [9]. With the advent of optical pumping, detailed
studies of the coherence of phonon emission in ruby were
enabled [10], culminating in a ruby “saser” (sound ampli-
fication by stimulated emission of radiation) [11]. Shortly
thereafter, phonon lasing was realized in a harmonically
bound Mgþ ion driven by optical forces [12].
Subsequently, it was recognized that optomechanical

systems in which optically furnished gain enables self-
sustained mechanical oscillation are properly called
“phonon lasers” [13]. These include beams [13,14] and
cantilevers [15] coupled to an optical cavity, microtoroids
[16,17], and a cantilever deriving mechanical gain from
optical band gap excitation [18]. Analogous electro-
mechanical [19,20] and purely mechanical [21] systems
have also been discussed. Various phenomena associated
with lasers, such as stimulated emission [12], oscillation
threshold [12,13,17,18,21], gain narrowing [21], and injec-
tion locking [22], have been demonstrated.
With few exceptions, these investigations have involved a

single mechanical mode. Multimode emission was observed
in ruby [2,3], and two-mode oscillation was observed
in a photothermally coupled optomechanical system [15].

Intermodal coupling in an electromechanical system was
exploited to realize a phonon laser without an optical pump
[21]. In the domain of conventional lasers, an interesting
and important feature arises when multimode operation is
considered. As shown by Lamb in 1964 [23], a saturation
phenomenon occurs in which the oscillation of one mode
suppresses the gain of other modes. This has the dramatic
consequence that, in the absence of inhomogeneous gain
broadening,a laseroscillates inasteadystateonasinglemode,
even when the small-signal gain exceeds the losses for more
than onemode [24,25]. Indeed, monochromatic output is one
of the most notable and useful characteristics of laser light.
In view of the multimode oscillation observed in the

photothermal system [15], it is natural to ask whether a
phonon laser employing pure radiation pressure coupling
would exhibit the single-mode oscillation characteristic of
a homogeneously broadened laser. Here, we study such a
system, in which one cavity mirror is formed by a highly
reflective membrane supporting many mechanical modes.
We find that when the mechanical gain exceeds the losses
for more than one mode, the steady-state condition is
nevertheless always that of a single oscillating mode. We
calculate the gain for the case of two modes and find that,
just as in the conventional laser, a strongly oscillating mode
tends to “steal” gain from competing modes. Sufficient
oscillation amplitude, in fact, reverses the sign of the gain
of more weakly oscillating modes, causing them to be
optically damped. Experimentally, we are able to force
certain modes to oscillate, or to put the system in a regime
in which the mode that ultimately oscillates is unpredict-
able and depends on thermal fluctuations. In addition, we
verify our prediction that as the oscillation strength of one
mode is increased, the quenched modes are, in fact, cooled.
Experiment.—As illustrated in Fig. 1, our optomechan-

ical resonator is used as the output coupler of a Fabry-Perot
cavity. It is a square (side a ¼ 1.25 mm) silicon nitride
membrane, patterned with an array of gratings, each 50 μm
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on a side. Each grating has a period smaller than the
wavelength (1.56 μm) of the light and has near-unity
reflectivity. The optomechanical properties of the device
have previously been reported [26,27]. Only one of the
gratings is used at a time, but by choosing a particular
grating, one can optimize the radiation pressure coupling
to a certain set of mechanical modes. All of the results
in this paper employ a grating centered at x0 ¼ 465ð10Þ μm
and y0 ¼ 400ð10Þ μm relative to a membrane corner.
The reflectivity of this particular grating yields a cavity
finesseF ≈ 1000. The input coupler has a radius of curvature
of R ¼ 25 mm. We use a cavity length Lcav ≈ R so that
the waist ω0 of the optical mode is below 20 μm; corresp-
ondingly, the cavity free spectral range is Δν ≈ 6 GHz.
We introduce two lasers into the cavity: a probe laser and

a pump laser, both with λ ¼ 1.56 μm, as shown in Fig. 1.
The probe laser is locked to a cavity resonance; the pump is
frequency offset from the probe laser by Δνþ δν, where δν
represents an arbitrary detuning from the adjacent cavity
mode. In order to transduce membrane displacements, we
implement a Michelson interferometer targeting the grating
used for the optical cavity. The Michelson beam employs
a third laser at 1.56 μm that is far off resonance from any
cavity mode (cavity linewidth≈6 MHz).
Radiation pressure-induced dynamics.—The power

circulating in the Fabry-Perot cavity is correlated to the
membrane motion, optically modifying the dynamics.
The case of a single mechanical mode has been studied
extensively [16]; the radiation pressure enables optically
modified frequency shifts, cooling, and oscillation.
Here, we generalize to multiple mechanical modes. We
express the membrane displacement zðx; y; tÞ as a sum of
products of normal modes ϕmnðx; yÞ with time-dependent

factors qmnðtÞ: zðx; y; tÞ ¼ P
m;nqmnðtÞϕmnðx; yÞ. For a

uniform square membrane, the modes are given by
ϕmnðx; yÞ ¼ sinðmπx=aÞ sinðnπy=aÞ, and the effective
mass meff is equal to one-fourth of the membrane mass
[28]. Each mode is driven by generalized force FmnðtÞ ¼R R

fðx; y; tÞϕmnðx; yÞdxdy [28], where fðx; y; tÞ is the
radiation pressure force per unit area.
The amplitude uðtÞ of the electric field circulating in a

high-finesse Fabry-Perot cavity with a varying cavity
length LðtÞ ¼ L0 þ zðtÞ is governed by the differential
equation

_uðtÞþ
�
γ− i

�
δωþ4πzðtÞ

λ
Δν

��
uðtÞ¼ iΔν

ffiffiffiffiffiffiffiffiffiffiffi
T1Pin

p
; ð1Þ

whereΔν ¼ c=ð2L0Þ, γ is the cavity field decay rate, related
to the finesse F by γ ¼ πΔν=F, and T1 is the transmission
of the input coupler. The cavity is driven by laser light
of frequency νL, wavelength λ, and powerPin, detuned from
a resonance frequency ν0 by δω ¼ 2πδν ¼ 2πðνL − ν0Þ.
The intensity distribution is Gaussian, with spot size ω0,
centered at ðx0; y0Þ.
For a sinusoidal membrane oscillation qmnðtÞ≡

zmn sin 2πνmnt, the solution to Eq. (1) contains a spectrum
of sidebands separated by νm. The dimensionless quantity
χmn ≡ 2ðΔν=νmnÞðzmn=λÞϕmnðx0; y0Þ appears as a natural
expansion parameter and, for χmn > 1, corresponds roughly
to the number of sidebands with significant amplitude.
The radiation pressure FRP ¼ 2juðtÞj2=c associated with
the circulating optical power oscillates at νmn and all of its
harmonics. For a high-Q mechanical oscillator, the dynam-
ics are well described by

q̈mn þ ½Γintr
mn þ ΓRP

mnðfχrsgÞ� _qmn þ ω2
mnqmn ¼

FthðtÞ
meff

: ð2Þ

Here, ωmn ¼ 2πνmn, and Γintr
mn is the intrinsic damping of

mode mn, related to the mechanical quality factor Qmn
by Γintr

mn ¼ ωmn=Qmn. FthðtÞ is the thermal Langevin
force, with spectral density SFðωÞ ¼ 4kBTmeffΓintr

mn. The
ΓRP
mnðfχrsgÞ are optical modifications to the damping of

mode mn; modifications to the ωmn are also present but
not significant here. In general, ΓRP

mnðfχrsgÞ depends on the
set of amplitudes fχrsg of all of the modes.
If the amplitudes are all small (χmn ≪ 1), only the first-

order sidebands need be considered. In this case, ΓRP
mn can

be shown to be independent of the fχrsg, and the optical
damping works independently for each mode. In previous
work, we have optically cooled hundreds of mechanical
modes simultaneously [27].
The situation ΓRP

mn < 0 corresponds to antidamping, or
optically furnished mechanical gain, and is obtained by
blue detuning (δν > 0). If the optical gain exceeds the
intrinsic damping −ΓRP

mn > Γintr
mn , the amplitude rings up

from its thermal value, and the first-order theory loses
validity. Indeed, as the amplitude of each mode grows, it

FIG. 1 (color online). A Fabry-Perot cavity employing a highly
reflective subwavelength grating in a silicon nitride membrane,
operated in vacuum, forms the optomechanical system. A
“probe” laser is locked to a cavity resonance, while a “pump”
laser is blue detuned relative to the adjacent longitudinal cavity
resonance and provides mechanical gain. A third laser is used for
a Michelson interferometer to sense membrane displacements.
PID is the proportional-integral-derivative controller, HPF is
high-pass filter, and LPF is low-pass filter.
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suppresses the gain of all of the other modes as determined
by the rates ΓRP

mnðfχrsgÞ. This phenomenon of intermode
gain suppression has a dramatic signature: it causes an
antidamped system to oscillate on a single mode, even if
the unsaturated mechanical gain exceeds the oscillation
threshold for more than one mode.

To see this, we start by calculating ΓRP for the case of

two low-order nondegenerate modes, where we use the

letters A and B to label mode indices mn. For ω0 ≪ a,

we find (see the Supplemental Material [29]) the gain of

mode A to be

ΓRP
A ðχA; χBÞ ¼ CPin

�
ϕ2
Aðx0; y0Þ
ν2A

�
× Im

�
1

χA

X∞
k;l¼−∞

JkðχAÞJk−1ðχAÞ
γ − i½δω − ðkωA þ lωBÞ�

J2l ðχBÞ
γ þ ifδω − ½ðk − 1ÞωA þ lωB�g

�
;

where χA and χB describe the oscillation amplitudes,
C ¼ 4T1Δν3=ðπmeffλcÞ, and the Jk are Bessel functions.
Clearly, the gain of mode A depends on the oscillation
amplitude of mode B. The single-mode case, which we
consider initially, can be obtained by taking χB → 0,
ΓRP
A ðχAÞ≡ ΓRP

A ðχA; 0Þ.
The single-mode oscillation threshold condition is given

by ΓRP
A ð0Þ ¼ −Γintr

A , and the steady-state oscillation ampli-
tude χA is given by ΓRP

A ðχAÞ ¼ −Γintr
A . Figure 2 shows (red

curve) the gain of mode ðm; nÞ ¼ ð2; 1Þ normalized to its
small-amplitude value ΓRP

21 ðχ21Þ=ΓRP
21 ð0Þ. We have taken a

detuning of δω ¼ 0.67γ and a mechanical frequency of
ω21 ¼ 0.07γ, corresponding to values used in our experi-
ment. This curve shows gain saturation, as expected: ΓRP

drops to half of the small-amplitude value for an oscillation
amplitude of χ ≈ 16.
Mode competition.—More interesting phenomena arise

when we consider how the gain of mode (1,2) is affected by
the amplitude of mode (2,1). Figure 2 (blue curve) shows
the gain of the (1,2) mode, in the limit of small oscillation
amplitude χ12, as a function of χ21. The curve exhibits two
key features: the gain of the weakly oscillating mode (1,2)
diminishes more rapidly with amplitude χ21 than that of the

stronger mode (2,1), and, when the (2,1) mode oscillates
with χ21 > 18, the gain of the weak mode actually switches
sign and provides damping. Qualitatively similar behavior
(not shown) is found for the gain of the (2,1) mode as a
function of χ12.
In our experiment, the mode with the lowest threshold

power is the (1,2) mode, with ν12¼ 192 kHz, Γintr
12 ¼

2.5ð2Þ s−1, and geometrical coupling ϕ1;2ðx0;y0Þ¼ 0.62ð3Þ.
The (2,1) mode, with ν21 ¼ 207 kHz, Γintr

21 ¼ 4.8ð3Þ s−1,
and ϕ2;1ðx0; y0Þ ¼ 0.83ð2Þ, has a slightly higher threshold
power Pthresh

2;1 ¼ 1.05Pthresh
1;2 , so for incident laser power

Pthresh
1;2 < Pin < Pthresh

2;1 , the (1,2) mode is the only one that
will oscillate. The (2,1) mode is, however, better coupled to
the radiation pressure, and for Pin ≫ Pthresh

2;1 , the net small-
amplitude gain −½ΓRP

21 ðfχthermal
rs gÞ þ Γintr

21 � is found to be 1.8
times larger than the corresponding gain for the (1,2) mode.
For large pump powers, then, the (2,1) mode more quickly
rings up from thermal amplitude, and as it does, the gain
for the more weakly oscillating (1,2) mode is suppressed, as
indicated in Fig. 2. Thus, by appropriate choice of pump
power, it is possible to deterministically force either the (1,2)
or (2,1) mode to oscillate. With different experimental
parameters, we have similarly been able to force the (1,1)
and (2,2) modes to oscillate.
For pump powers exceeding the oscillation threshold of

both modes (1,2) and (2,1), but low enough that the net
small-amplitude gains for the two modes are comparable,
it is not possible to predict which mode will oscillate in the
steady state. We study the time dependence of the mode
competition by sending the signal from the Michelson
interferometer into lock-in amplifiers referenced to ν12
and ν21. Figures 3(a) and 3(b) (solid lines) show typical
amplitudes zmnðtÞ for such experiments. We switch on the
pump at time t ≈ 50 s, with detuning δω ¼ 0.67γ and
power slightly larger than Pthresh

2;1 , and switch it back off
at t ≈ 175 s. The amplitudes of the (1,2) and (2,1) modes
both initially grow, but after several seconds, one mode
grows until its gain is saturated, while the growth of the
other mode is quenched. Independent measurements con-
firm that the oscillations of all other modes are likewise
quenched.
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FIG. 2 (color online). Gain saturation vs oscillation amplitude,
calculated for detuning δω ¼ 0.67γ. Red curve: single-mode
normalized antidamping ΓRP

21 ðχ21Þ=ΓRP
21 ð0Þ of mode (2,1) vs
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From the amplitudes of the steady-state oscillation in
Figs. 3(a) and 3(b) (75 s < t < 175 s), we infer χ21 ¼ 7.4
and χ12 ¼ 9.2, respectively. From the calculated dependence
of gains on χ21 (Fig. 2) and χ12, one infers Pin ¼
1.18ð2ÞPthresh

1;2 , and one also finds the net damping Γnet
mn ¼

Γintr
mn þ ΓRP

mnðfχrsgÞ of the modes that are quenched to be
Γnet
12 ≈ 0.2 s−1 and Γnet

21 ≈ 1.1 s−1. The fact that the net
damping of the (1,2) mode is so small manifests itself in
the size of the fluctuations of the quenched (1,2)mode,while
the (2,1) mode is oscillating [Fig. 3(a), 75 s < t < 175 s],
that are well above the thermal level (t < 45 s). The dashed
curves in the figures show the results of simulations based
on numerical integration of Eq. (2), in which the thermal
forceFthðtÞ is modeled by means of a memoryless Gaussian
stochastic process. As in the experiment, the mode that
ultimately oscillates cannot be predicted in advance. The
only adjustable parameter in the simulation is the pump
laser power, taken to be Pin ¼ 1.18Pthresh

1;2 .
Figure 3(c) shows a set of trajectories calculated by

integrating Eq. (2) with Pin ¼ 1.18Pthresh
1;2 for a variety of

initial conditions, taking T ¼ 0 for clarity. Similar curves
were shown in the paper by Lamb [23] in his study of
multimode operation of an “optical maser.” Corresponding
curves for 13 successive realizations of the experiment are
shown in Fig. 3(d).
Anomalous cooling.—While the amplitudes of the fluc-

tuations in the quenched mode are above the thermal level
in Figs. 3(a) and 3(b), the calculated antidamping shown in
Fig. 2 shows that we expect cooling of the quenched mode
when the amplitude of the oscillating mode is large enough.

To study this matter, we set the (2,1) mode into oscillation
with a sequence of ten pump powers from Pin ¼ 1.3Pthresh

2;1
to Pin ¼ 6.4Pthresh

2;1 . For each power, we measured the
amplitude zmnðtÞ of both the (1,2) and (2,1) modes for
450 s, then extinguished the pump, allowed the transients to
die away, and measured the thermal amplitudes for another
450 s. The inset to Fig. 4 shows histograms of the amplitudes
z12ðtÞ for the cases of no pump, low (Pin ¼ 1.3Pthresh

2;1 ) pump
powers, and high (Pin ¼ 6.4Pthresh

2;1 ) pump powers. In ther-
mal equilibrium, the amplitude zmn is distributed according
to a Boltzmann distribution

pðzmnÞ ¼
meffω

2
mn

kBT
zmne−½ðmeffω

2
mnz2mnÞ=2kBT�: ð3Þ

Each of the curves in the inset is fit to Eq. (3). The statistics of
the set of ten such thermal (pump off) measurements yields a
mean of T0 ¼ 278 K with a standard deviation of ≈12 K.
The largest uncertainty in the inferred temperature arises
from ϕ12ðx0; y0Þ, used to infer z12ðtÞ, and contributes an
uncertainty of 6%; adding the statistical contribution in
quadrature, we assign an uncertainty of 7.5% to the temper-
ature measurements. At Pin ¼ 1.3Pthresh

2;1 , the statistics of
the fluctuations in the (1,2) mode, while the (2,1) mode
is oscillating, correspond to an effective temperature of
1040(77) K. At Pin ¼ 6.4Pthresh

2;1 , the effective temperature
is 180(14) K, illustrating the anomalous cooling predicted
in Fig. 2. Figure 4 shows the effective temperature inferred
from fits to Eq. (3) for all ten pump powers. Also shown is
the analytic predictionTeff¼293K×Γintr

12 =ðΓintr
12 þΓRP

12 Þ [16].
Conclusion.—We have studied the problem of mode

competition in a multimode phonon laser both theoretically
and experimentally. By using a highly reflective membrane
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as the end mirror of an optical cavity, in which many
mechanical modes are coupled to the intracavity radiation
pressure, we demonstrate that the oscillation of one
mode tends to “steal” gain from more weakly oscillating
modes, culminating in single-mode steady-state operation.
Remarkably, the strong oscillation of one mode even causes
optical damping of the other modes. In addition to more
fully illuminating the analogy between phonon lasers and
their optical counterparts, the insights gained here can be
used to force a particular mode to oscillate when multiple
modes are capable of oscillation, which may be useful as
applications of phonon lasers appear.
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