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We study extreme-value statistics of Brownian trajectories in one dimension. We define the maximum as
the largest position to date and compare maxima of two particles undergoing independent Brownian
motion. We focus on the probability PðtÞ that the two maxima remain ordered up to time t and find the
algebraic decay P ∼ t−β with exponent β ¼ 1=4. When the two particles have diffusion constants D1

and D2, the exponent depends on the mobilities, β ¼ ð1=πÞ arctan ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=D1

p
. We also use numerical

simulations to investigate maxima of multiple particles in one dimension and the largest extension of
particles in higher dimensions.
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Consider a pair of particles undergoing independent
Brownian motion in one dimension [1]. These two particles
do not meet with a probability that decays as t−1=2 in the
long-time limit. This classical first-passage behavior holds
for Brownian particles with arbitrary diffusion constants.
It holds even for particles undergoing symmetric Lévy
flights [2,3] and has numerous applications [3,4]. Here, we
generalize this ubiquitous first-passage behavior to maxima
of Brownian particles. Figure 1 shows that the maximal
position of each particle forms a staircase, and it illustrates
that unlike the position, the maximum is a non-Markovian
random variable [5,6]. We find that two such staircases do
not intersect with probability P that is inversely propor-
tional to the one-fourth power of time, P ∼ t−1=4, in the
long-time limit. If the particles move with diffusion con-
stants D1 and D2, the two maxima remain ordered during
the time interval (0, t) with the slowly decaying probability

P ∼ t−β where β ¼ 1

π
arctan

ffiffiffiffiffiffi
D2

D1

s
: ð1Þ

In this Letter, we obtain this result analytically and
investigate numerically related problems involving multi-
ple maxima and diffusion in higher dimensions.
Anomalous relaxation with nontrivial persistence expo-

nents [7–9], enhanced transport due to disorder [10,11],
and anomalous diffusion due to exclusion [12,13] are
dynamical phenomena that were recently demonstrated in
experiments involving Brownian particles. Understanding
the nonequilibrium statistical physics of these diffusion
processes is closely intertwined with the characteristic
behavior of extreme fluctuations and the statistics of
extreme values [14–19].
We first establish Eq. (1) for two Brownian particles

having the same diffusion constant D. Let us denote the
positions of the particles at time t by x1ðtÞ and x2ðtÞ, and
without loss of generality, we assume x1ð0Þ > x2ð0Þ. We

define the maximum of the first particle m1ðtÞ to be its
rightmost position up to time t; similarly, m2ðtÞ is the
maximal position of the second particle. Our goal is to find
the probability PðtÞ that the two maxima remain ordered
m1ðτÞ > m2ðτÞ for all 0 ≤ τ ≤ t.
The two maxima remain ordered if and only if

m1ðτÞ > x2ðτÞ at all times 0 ≤ τ ≤ t. Hence, to find P,
there is no need to keep track of the maximum m2, and it
suffices to consider only the position x2. As a further
simplification, we focus on the distance of each particle
from the maximum m1 and introduce the variables

u ¼ m1 − x1 and v ¼ m1 − x2: ð2Þ

By definition, both distances are positive, u ≥ 0 and v ≥ 0.
The transformation (2) maps the four variables (two
positions and two maxima) onto the two relevant variables
(two distances). Since the positions x1 and x2 undergo
simple diffusion, the distances u and v also undergo simple
diffusion in the domain u > 0 and v > 0. Hence, the
probability density ρðu; v; tÞ obeys the diffusion equation
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FIG. 1 (color online). Space-time diagram of the positions (thin
lines) and the ordered maxima (thick lines) of two Brownian
particles.
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∂tρ ¼ D∇2ρ with ∇2 ¼ ∂2
u þ ∂2

v along with the boundary
conditions ρjv¼0 ¼ 0 and ð∂u − ∂vÞρju¼0 ¼ 0. The boun-
dary v ¼ 0 is absorbing so that position x2 does not exceed
maximum m1. The second boundary condition (see
Supplemental Material [20] for derivation) guarantees that
there is no current through the line u ¼ 0, and it also takes
into account the upward drift along the boundary u ¼ 0.
Indeed, when the maximum increases,m1 → m1 þ δm, one
distance remains the same, u ¼ 0, but the second distance
increases, v → vþ δm (Fig. 2).
The probability PðtÞ is the integral of the probability

density, PðtÞ ¼ R
∞
0

R
∞
0 dudvρðu; v; tÞ. This quantity equals

the survival probability of a “composite” particle with
coordinates (u, v) that is undergoing Brownian motion in
two dimensions. This composite particle starts somewhere
along the boundary u ¼ 0, and it diffuses in the domain
u > 0 and v > 0. The particle slips along the boundary
u ¼ 0, but it is annihilated when it reaches the boundary
v ¼ 0 (Fig. 2).
In general, the probability P depends on the initial

coordinates uð0Þ and vð0Þ. It is convenient to compute
the probability P directly rather than through the proba-
bility density ρðu; v; tÞ. With the shorthand notations
X ≡ uð0Þ and Y ≡ vð0Þ, the probability P≡ PðX; Y; tÞ
obeys the standard diffusion equation [21,22]

∂P
∂t ¼ D∇2P ð3Þ

when X > 0 and Y > 0, where ∇2 ¼ ∂2
X þ ∂2

Y is the
Laplace operator. The initial condition is P ¼ 1 in the
region X ≥ 0 and Y > 0, and the boundary conditions are
PjY¼0 ¼ 0 and ð∂X þ ∂YÞPjX¼0 ¼ 0. The former reflects
that the boundary Y ¼ 0 is absorbing, and the second is a
consequence of the upward drift (see Supplemental
Material [20] for details). Our problem corresponds to
the special case X ¼ 0 and Y ¼ x1ð0Þ − x2ð0Þ.

In terms of the polar coordinates R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
and

θ ¼ arctanðY=XÞ, the probability P≡ PðR; θ; tÞ obeys the
diffusion equation (3) with

∇2 ¼ ∂2

∂R2
þ 1

R
∂
∂Rþ 1

R2

∂2

∂θ2 :

The first boundary condition is simply Pjθ¼0 ¼ 0. The
second boundary condition becomes

�
R
∂P
∂R −

∂P
∂θ

�����
θ¼π=2

¼ 0; ð4Þ

where we have utilized ∂X ¼ cos θ∂R − R−1 sin θ∂θ and
∂Y ¼ sin θ∂R þ R−1 cos θ∂θ.
To solve for the probability P, we first note that both the

diffusion equation (3) and the boundary condition (4) are
invariant under the scaling transformation ðX;YÞ→ ðαX;αYÞ
and t → α2t. As a result, the quantity R2=ðDtÞ is the only
dimensionless combination of the variables R, D, t. Of
course, the probability P is dimensionless, and we thus
expect PðR; θ; tÞ ∼ ðR2=DtÞβfðθÞ in the long-time limit. We
now substitute this expression into (3) and observe that the
left-hand side vanishes in the long-time limit. Consequently,
the function f obeys f00 þ ð2βÞ2f ¼ 0. Next, we choose the
solution fðθÞ ¼ sin ð2βθÞ to satisfy the boundary condition
Sjθ¼0 ¼ 0. We, thus, find (see, also, [22])

PðR; θ; tÞ ∼
�
R2

Dt

�
β

sinð2βθÞ ð5Þ

in the limit t → ∞. Next, we substitute (5) into (4) and
observe that the second boundary condition is obeyed when
tanðβπÞ ¼ 1. Thus, β ¼ 1=4, and we arrive at the slow
kinetics (Fig. 3)

P ∼ t−1=4: ð6Þ

u

v

FIG. 2 (color online). Sample trajectory of the composite
particle. There is upward drift along the boundary u ¼ 0 and
the boundary v ¼ 0 is absorbing.
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FIG. 3 (color online). The probability P versus time t. Shown
are Monte Carlo simulation results obtained from 108 indepen-
dent realizations (circles). Also shown as reference (line) is the
theoretical prediction (6).
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Importantly, the decay exponent is an eigenvalue of the
angular component of the Laplace operator, and it is
specified by the boundary conditions. We note that the
behavior (6) also characterizes the probability that a particle
diffusing on a plane avoids a semi-infinite needle [23] and
that similar kinetics are found for diffusion in shear flows
[24,25] and random acceleration processes [26,27].
Consider now the general case where the two particles

have diffusion constants D1 and D2. The transformation
ðx1;x2Þ→ ðx̂1; x̂2Þwith ðx̂1; x̂2Þ¼ ðx1=

ffiffiffiffiffiffi
D1

p
;x2=

ffiffiffiffiffiffi
D2

p Þmaps
this anisotropic Brownian motion onto isotropic Brownian
motion in two dimensions. The maxima are also rescaled,
ðm1;m2Þ→ ðm̂1;m̂2Þwith ðm̂1;m̂2Þ¼ðm1=

ffiffiffiffiffiffi
D1

p
;m2=

ffiffiffiffiffiffi
D2

p Þ.
The two maxima remain ordered, m1 > m2, as long as

σm̂1 > m̂2 with σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=D2

p
: ð7Þ

Thus, we expect that the exponent depends on the ratio of
diffusion constants, β≡ βðD1=D2Þ. When one particle is
immobile, the problem simplifies. If D1 ¼ 0, the maxima
remain ordered if the particles do not meet, x1ð0Þ > x2ðtÞ,
and, hence, P ∼ t−1=2. In the complementary case D2 ¼ 0,
an immobile particle cannot overtake a maximum set by a
mobile particle and P ¼ 1. The limiting values are, there-
fore, βð0Þ ¼ 1=2 and βð∞Þ ¼ 0, and since the exponent
should be a monotonic function of the ratio D1=D2, we
deduce 0 ≤ β ≤ 1=2.
The above analysis is straightforward to generalize if

instead of (2) we use the distances u ¼ m̂1 − x̂1 and
v ¼ σm̂1 − x̂2. Again, diffusion takes place in the domain
u > 0 and v > 0, and the boundary conditions arePjY¼0¼0
and ð∂X þ σ∂YÞPjX¼0 ¼ 0. In polar coordinates, the latter
boundary condition reads ðσR∂R − ∂θÞSjθ¼π=2 ¼ 0. Using
this boundary condition and the probability P given by (5),
we deduce σ tanðβπÞ ¼ 1 and thus, obtain our main
result (1).
The exponent is rational for special values of the diffusion

constants, for instance, βð1=3Þ ¼ 1=3, βð1Þ ¼ 1=4, and
βð3Þ ¼ 1=6. Exponent β varies continuously with the ratio
D1=D2 (Fig. 4). Unlike the universal first-passage behavior
t−1=2 characterizing positions of Brownian particles, the
behavior of the probability P is not universal. Further, first-
passage kinetics of maxima of mobile Brownian particles
are generally slower compared with first-passage kinetics of
positions since β < 1=2. As expected, the limiting values are
βð0Þ ¼ 1=2 and βð∞Þ ¼ 0, and the limiting behaviors are
1=2 − β≃ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=D2

p
when D1 ≪ D2 and β≃ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=D1

p
for D2 ≪ D1.
When the diffusion constants differ, there are two separate

exponents βðD1=D2Þ and βðD2=D1Þ. Equation (1) together
with the trigonometric identity arctanðxÞ þ arctanð1=xÞ ¼
π=2 give the relationship [28]

β

�
D1

D2

�
þ β

�
D2

D1

�
¼ 1

2
: ð8Þ

Let βmax be the larger of these two exponents and βmin be
the smaller one. When the particles have different mobil-
ities, there are two different relaxation processes that
govern lead changes between two Brownian maxima:
the faster relaxation P ∼ t−βmax occurs when a particle tries
to overtake the maxima set by a less mobile particle, and the
slower relaxation P ∼ t−βmin occurs in the complementary
case. The two particles keep exchanging the lead, and
interestingly, this process exhibits alternating kinetics:
slow—fast—slow—fast ad infinitum.
One anticipates that the asymptotic behavior (1) applies

to a broad class of diffusion processes. As a test, we
performedMonte Carlo simulations (see also Refs. [29,30])
of discrete-time random walks in one dimension with two
different implementations: (i) a random walk on a lattice
where all step lengths have the same size, and (ii) a random
walk on a line where the step lengths are chosen from a
uniform distribution with compact support. In both cases,
the simulation results are in excellent agreement with the
theoretical predictions. The simulation results shown in
Figs. 3 and 4 correspond to random walks on a line.
For n particles undergoing Brownian motion, there are

three natural generalizations of the probability P. First
is the probability An that all n maxima remain perfectly
ordered, that is, n staircases as in Fig. 1 never intersect; for
positions of Brownian particles, this problem dates back
to [31]. Second is the probability Bn that the rightmost
staircase is never overtaken; the corresponding problem
for positions was studied in [32]. Third is the probability
Cn that the leftmost staircase never overtakes another
maxima [33]. We expect all three quantities to decay as
power laws,

An ∼ t−αn ; Bn ∼ t−βn ; Cn ∼ t−γn ; ð9Þ

with exponents αn, βn, and γn that depend on the number
of particles n. Table I lists results of Monte Carlo
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FIG. 4 (color online). The exponent β versus the ratio D1=D2.
The line corresponds to the theoretical curve (1) and the dots
to results of Monte Carlo simulations with 107 independent
realizations.

PRL 113, 030604 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
18 JULY 2014

030604-3



simulations along with the analogous exponents for the
positions, rather than the maxima [22].
All of the exponents are directly related to eigenvalues

of the Laplace operator in high-dimensional space with
suitable boundary conditions. Even for the simpler case of
ordered positions, such eigenvalues are generally unknown
(Table I). We expect that αn > βn > γn and, furthermore,
that all three exponents increase with n. Further, it is
possible to justify the behavior βn ≃ bn and consequently
[22,33] obtain the logarithmic growth βn ≃ 1

4
ln n when the

number of particles is large, n → ∞. Also, it is simple to
show that γn → 1=2 in the limit n → ∞ [19]. Based on the
numerical results, we conjecture that one of the exponents
is rational, γn ¼ ðn − 1Þ=2n; this form is consistent with
γ1 ¼ 0 and γ2 ¼ 1=4.
Our results thus far concern diffusion in one spatial

dimension, yet closely related questions can be asked of
Brownian motion in arbitrary dimension d. Consider, for
example, the maximum distance traveled by a Brownian
particle. If the particle starts at the origin, this distance
equals the radial coordinate in a spherical coordinate
system. We expect that the probability Ud that the maximal
radial coordinate of one particle always exceeds that of
another particle decays algebraically with time, Ud ∼ t−νd .
Our numerical simulations show that exponent ν grows
rather slowly with dimension d

ν1 ¼ 0.563; ν2 ¼ 0.602; ν3 ¼ 0.630: ð10Þ

It would also be interesting to study planar Brownian
excursions and, in particular, the probability that the convex
hull generated by one particle always contains that of a
second particle [34,35].
We also mention that the first-passage process studied

in this Letter is equivalent to a “competition” between two
records [36]. As a data analysis tool, the first-passage
probability P is a straightforward measure and can be used
in finance [37], climate [38,39], and earthquakes [40,41].
The notion of competing maxima could also describe the

span of colloidal particles undergoing simple or anomalous
diffusion [10,12].
In summary, we studied maxima of Brownian particles in

one dimension and found that the probability that such
maxima remain ordered decays as a power law with time.
The exponent characterizing this decay varies continuously
with the diffusion coefficients governing the motion of
the particles. When there are two particles, the problem
reduces to diffusion in two dimensions with mixed boun-
dary conditions. Recent studies show that the eigenvalues
characterizing ordering of a very large number of Brownian
trajectories obey scaling laws in the thermodynamic limit
[22], and an interesting open challenge would be to use
such scaling methods to elucidate extreme-value statistics
of many Brownian trajectories.

We acknowledge the DOE Grant No. DE-AC52-
06NA25396 for support (E. B.).
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