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We show that the number of distinct topological states associated with a given knotted defect, L, in a
nematic liquid crystal is equal to the determinant of the link L. We give an interpretation of these states,
demonstrate how they may be identified in experiments, and describe the consequences for material
behavior and interactions between multiple knots. We show that stable knots can be created in a bulk
cholesteric and illustrate the topology by classifying a simulated Hopf link. In addition, we give a
topological heuristic for the resolution of strand crossings in defect coarsening processes which allows us to
distinguish topological classes of a given link and to make predictions about defect crossings in nematic
liquid crystals.
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Topological concepts have come to play an increasingly
significant role in characterizing and controlling material
behavior across all areas of condensed matter, encompass-
ing vortices in fluids [1,2], defects in ordered media [3–5],
the quantum Hall effect [6,7], colloids in liquid crystals
[8–11], topological insulators [12,13], and boundary modes
in isostatic lattices [14,15]. A recent development has been
the experimental creation of knotted field configurations in
laser light [16], liquid crystals [11,17–20], and fluid flows
[21], leading to a resurgence of theoretical interest in
electromagnetism [22–25], superfluids [26], liquid crystals
[27], and particle physics [28]. In liquid crystals, knotted
fields are often produced, or controlled, by colloidal
particles and their associated topological defects
[11,17,27]. By suitable manipulation with laser tweezers,
the defect lines can be tied into arbitrary knots and links
[17,29]. Furthermore, modern fabrication techniques allow
the colloids themselves to be made in the shape of a knot
[20], including with hybrid surface anchoring conditions
[19], so that the colloid faithfully mimics a defect line.
Thus, more or less arbitrary knotted textures can be made
and manipulated, and it is important to understand and
characterize their properties.
Knots are intricate entities that display enormous diver-

sity. Different knots, and links, distinguish themselves
through a large number of topological invariants, including
various polynomials, homology groups, and homotopy
groups [30,31]. These must be encoded in any knotted
field, although, at present, it is almost completely unknown
which invariants manifest themselves in distinct material
properties or behavior. A most basic question is how to
determine how many topologically distinct knotted con-
figurations are compatible with a given link, L, and
characterize them. For instance, there are an infinite
number of distinct point vortices in the XY model labelled
by an integer winding number, and the distinct types of
topological insulators and superconductors can be

classified by a periodic table using Bott periodicity [32].
Here, we show that the number of distinct knotted fields in
a nematic liquid crystal (up to homotopy) is given by the
determinant of the link, a well-known and readily com-
putable knot invariant. Thus, the number of Hopf link
textures is two, the number of trefoil knots is three, and the
number of Borromean rings is sixteen. All of these links
have been created experimentally [17]; our result begs the
question of which ones? We characterize experimental
signatures of all of these textures, accessible using three-
photon excitation fluorescence polarizing microscopy [18]
or direct observations of strand crossing [33,34]. Finally,
we demonstrate, numerically, that many different links
can appear as free-standing metastable textures in bulk
cholesterics.
Defect lines in nematics, whether genuine or imitated by

colloids [19], are regions where the material order is
undefined and are characterized by the property that the
molecular alignment reverses orientation upon going
around the line once [35]. This gives a vivid visual
demonstration that the order in nematics corresponds to
a unit line field, called the director, rather than a vector.
Nonetheless, it is a widely adopted convention to treat the
director as a vector field and impose the equivalence
n ∼ −n “by hand.” A formal treatment of this process
provides a natural framework for characterizing knotted
nematics. Since the alignment returns to the same orienta-
tion upon going around the disclination twice, any knotted
director field, n, can be lifted to a vector field, n̂, on the
cyclic double cover Σ̂ðLÞ of the link complement, a process
analogous with the familiar branch cuts of complex
analysis. It is the topology of this space that is explored
by the nematic, which provides a physical realization of the
double branched cover of S3 over the link. This perspective
allows the director to be properly treated as a global vector
field, the topology of which is classified by standard tools
in homology theory [36].
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To outline, briefly, how our classification result follows:
after passing to the vector field n̂, the equivalence relation
n ∼ −n is restated as a compatibility condition with respect
to the deck transformation, t, of the covering space (that
moves us from a point x on one sheet of the cover to the
equivalent point of the other)

n̂ðtxÞ ¼ −n̂ðxÞ: ð1Þ

Such vector fields are said to be equivariant. Before
imposing equivariance, unit vector fields on the cyclic
double cover are classified by the induced map on second
cohomology and, hence, by the group H2ðΣ̂ðLÞÞ ≅
H1ðΣ̂ðLÞ; ∂Σ̂ðLÞÞ [37]. The elements of this group are
cycles that entangle the knot and tethers that connect
various link components, illustrated in Fig. 2. Restricting
to equivariant maps only allows cycles of the form ðe − teÞ.
Equivalence between a pair of cycles ðe − teÞ and ðe0 − te0Þ
is established by considering equivariant homotopies that
exchange cycles across any branching surface between the
two sheets of Σ̂ðLÞ. These conditions reduce the group
H1ðΣ̂ðLÞ; ∂Σ̂ðLÞÞ to H1ðΣðLÞÞ, the first homology group
of the double branched cover of S3 over L. The order of this
group (if finite) is known as the knot determinant and
counts the number of topologically distinct nematic tex-
tures associated to a given link, L [38]. In addition to a
finite number of states for knots (see Fig. 1), some links
support an infinite number of states, the (4,4) torus link [see
Fig. 1(c)], for example, has H1ðΣðLÞÞ ¼ Z2⊕Z2, meaning
that the state is described by three integers, one of which is
defined mod 2.
We can use this result to understand the topology of

multiple knotted and linked defects in a nematic. If a given
link L is split (meaning that it has multiple components that
can each be surrounded by a measuring sphere in the space)
into say L1;…; Ln, shown in Fig. 1(a), then H1ðΣðLÞÞ
splits as a direct sum [30]

H1ðΣðLÞÞ ¼ Zn−1⊕
�
⨁
n

i¼1

H1ðΣðLiÞÞ
�
: ð2Þ

This equation encodes the topological interaction between
a collection of knots and links. Indeed, one can think of
each split component as a knotted “particle,” the internal
states of which are given by H1ðΣðLiÞÞ, i.e., the determi-
nant of the component on its own. This interpretation,
reminiscent of Kelvin’s “vortex atoms” [40], is supple-
mented by a topological interaction between the compo-
nents. This is specified by an integer associated to each
component, interpreted as the usual “hedgehog charge” that
identifies point defects. This gives the factor of Zn−1 in (2),
there being only n − 1 degrees of freedom due to the
conserved total charge imposed by the uniform far-field
boundary conditions. Each factor of Z can be calculated in
the usual way by considering the director field on a

measuring sphere and computing the degree of the
map [35,39].
To complement this topological classification, we give a

physical interpretation of these states and describe methods
to identify knots produced experimentally or in simulation.
This is provided by the Pontryagin-Thom (PT) construc-
tion, illustrated in Fig. 2, which allows the different states to
be distinguished by a combination of “Skyrmion tubes” and
relative disclination orientation. This construction has been
implemented experimentally [18], and its employment
should enable the identification of knotted defects in the
laboratory. The PT construction gives a rigorous and
succinct way of viewing the global topological data
encoded in a director field [41,42]. One draws the surface
consisting of all points where the director is perpendicular
to a chosen orientation d. For a given d, any π rotation of
the director will be perpendicular to d at least once and so,
for line defects, this construction produces a surface whose
boundaries are disclination lines, shown in Fig. 2(d). An
additional degree of freedom, corresponding to the director
orientation in the plane perpendicular to d, is used to color
the surface, as in Fig. 2(b). While the PT surface need not

FIG. 1 (color online). (a) “Particle” based picture of knotted
defects in liquid crystals. Each link (L − R: trefoil knot, unknot,
and Hopf link) has an internal degree of freedom given by an
element of H1ðΣðLÞÞ, the size of which is detðLÞ. Each split
component then carries a hedgehog charge, calculated using the
degree of the texture on the measuring spheres [35,39], which is
constrained by charge conservation. (b) Borromean rings; for this
link H1ðΣðLÞÞ ¼ Z4⊕Z4 giving a total of 16 distinct states.
(c) (4,4) torus link; this link has H1ðΣðLÞÞ ¼ Z2⊕Z2, and, thus,
supports an infinite number of states.
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be orientable, the direction in which the director rotates as
one lifts off the surface defines a local orientation on the PT
surface, which can be reversed through a π rotation of the
director in the surface itself [43].
In terms of this construction, the difference between

states is captured by differences in the topology and
coloring of this surface. For a knot or link, the PT
construction produces a surface, F, whose boundary is
L, demonstrated in Figs. 2(a) and 2(c). This F corresponds
to a "branch cut" between the two sheets that was
performed during the transition to Σ̂ðLÞ. In Fig. 2, this
surface is shown in blue, the constant color indicating that
the orientation of the director on the surface is uniform.
Textures also exist where the surface F does not have a
constant color. In these cases, one can perform a deforma-
tion of the texture, corresponding to a cobordism of the
surface, contracting the region of color winding and pulling
the colored part of the surface away from F, until it takes
the form of separate pieces of surface that are either tubes
entangled with the surface as shown in Fig. 2(a), or tethers
joining separate link components. These tubes or tethers
have a 2π winding of the director around their meridian and

can be thought of as Skyrmion tubes, a baby Skyrmion,
with a profile as in Fig. 2(b), extruded along a cycle. The
cycle along which this tether or tube runs is precisely a
cycle in H1ðΣ̂ðLÞ; ∂Σ̂ðLÞÞ, giving a vivid visual corre-
spondence between the classification and physical realiza-
tion of these textures.
An additional subtlety arises for links, which may

support multiple topologically distinct planar textures,
i.e., the director lies everywhere in a single plane (the
ðx-zÞ plane, say). Such textures do not possess any
Skyrmion tubes. Figure 2(c) furnishes an example of this,
demonstrating representatives of the two distinct textures
that may be associated to the Hopf link. These examples
have interpretations as disclinations with linking number
Lk ¼ �1.
This topological distinction manifests itself in the physi-

cal behavior of defect lines. A free-standing defect in a
nematic will coarsen over time, undergoing strand cross-
ings in order to reduce its free energy [33,34]. Such strand
crossings have long been expected to have a distinctive
topological character in systems with a non-Abelian fun-
damental group [44] but have never been observed. In the
light of our topological classification, we find that the
behavior and relaxation of unstable defects has a similarly
distinctive dependence on the topological class of the knot
or link. We demonstrate this using the Hopf link, though the
phenomenon is general in nature, with relevance to all
defect crossing processes. Figure 3 shows simulated
relaxation dynamics of two Hopf link defects, with linking
numbers �1. The resolution of strand crossings in such
relaxation processes is observed to always preserve the

FIG. 2 (color online). Using the Pontryagin-Thom construction
to understand knotted textures. (a) Cartoon PT surface (blue) for a
trefoil knot, entangled with a Skyrmion tube. The tube cannot be
removed without altering the topology of the defect line; the
number of these tubes distinguishes the different topological
classes. The shading (coloring) of the Skyrmion tube corresponds
to the shading (coloring) of the strip in (b). (b) Cartoon showing
the relation between a Skyrmion (tube) and the PT surface. The
surface is drawn where the director is horizontal, and shaded
(colored) by orientation as shown. (c) The two distinct Hopf link
textures can be distinguished by the structure of their potential PT
surfaces. Using the right-hand rule, one can define an orientation
for each link and compute linking numbers. The Lk ¼ þ1 texture
is also equivalent to the Lk ¼ −1 texture with an additional tether
connecting the two components. (d) The Pontryagin-Thom sur-
face. The surface is constructed as the set of all points where the
molecular orientation is perpendicular to a chosen direction d;
disclinations become boundaries of this surface.

FIG. 3 (color online). The topology of defect crossing proc-
esses. (a) and (c) Simulation results showing example relaxations
of Lk ¼ þ1 and Lk ¼ −1 Hopf link textures. The orientation
induced by the PT surface, shown by black arrows, is preserved
by the strand crossings. (b) Schematic of a possible defect strand
cobordism. The Pontryagin-Thom surface is shown shaded. The
orientation destroying resolution necessarily induces a π rotation
of the director in the surface, indicated by the colored bar; this
distortion is energetically unfavored in a nematic, and so, in such
systems, the resolution will preserve the orientation induced by
the PT surface.
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effective orientation imparted to the defects by the
Pontryagin-Thom surface [shown in Fig. 2(c)]. This effect
can be understood as a combination of energetics and
topology. The simplification of defect lines can be pictured
in terms of elementary cobordism moves, an example of
which is shown in Fig. 3(b). These cobordism moves act
not just on the defects themselves but on the defects and the
PT surface simultaneously, a reflection of the fact that the
entire nematic texture is knotted, not just the disclinations.
Locally the sides of the PT surface are distinguished, and
for a cobordism to connect the two opposite sides (and
facilitate a strand crossing) requires a local π rotation in the
director on the surface itself. This π rotation is topologi-
cally required only if the cobordism does not preserve
orientation. Since the energy in a nematic is a simple
quadratic elasticity, such distortions as produced by the
orientation destroying cobordism are suppressed.
This behavior provides a means to distinguish the

topological types of links and knots purely by observation.
For example, the two distinct Hopf links may be distin-
guished by the manner in which they annihilate, as in
Fig. 3. More generally, this gives an initial characterization
of the topological dynamics of defects in nematic
systems. Indeed, the outcome of generic defect processes,
easily observed experimentally, can be predicted by this
rule.
What of the influence of topology on stable knotted

configurations? The natural setting for stable knots is either
in colloidal systems [17,19,20,27] or in cholesterics, where
one can exploit the length scale set by the cholesteric pitch.
This has been demonstrated in simulations of cholesteric
droplets [45] and unknotted configurations in strong con-
finement [46], but never knots in bulk materials without the
presence of colloidal particles. Here, we show numerically
the existence of a stable Hopf link in a bulk cholesteric,
shown in Fig. 4. Using the PT construction, we are able to
extract the topological class of the configuration, demon-
strating a possible experimental method of identification.
Figures 4(a) and 4(c) show a stable Lk ¼ þ1 Hopf link,
while Fig. 4(b) shows the PT surface computed from the
simulation results. The defect lines are of order one pitch
length in size, and display a local twist profile in the
director. The PT surface is orientable, and carries no color
winding, Skyrmion tethers, or tubes. We may, therefore,
use the induced orientation on the boundary components to
compute the linking number of the defect lines and identify
the state. While Fig. 4 shows only a Hopf link, we have also
been able to stabilize a large variety of knots and links—
such as the trefoil, figure eight, and Solomon’s knot—
limited only by our persistence. The simulation shown has
q0 < 0 and it is interesting to note that the Lk ¼ −1 Hopf
link was only found to be stable with q0 > 0, with a similar
phenomenon shown for the left- and right-handed trefoil
knots, suggesting a link between the chirality of the system
and of the knot.

To make controlled simulations of these states, in both
the nematic and cholesteric cases, we use Milnor fibrations
[47] to construct an ansatz containing a knotted director
field. These have also been used in optics [16] and
electromagnetism [25], so we merely summarize the
features relevant to the present construction. We take the
complex polynomial fðz1; z2Þ ¼ zp1 þ ð−iz2Þq restricted to
S3 ⊂ C2, i.e., jz1j2 þ jz2j2 ¼ 1. Constructing the director
ansatz

n ¼ ð cosðq0zþ ϕ=2Þ; sinðq0zþ ϕ=2Þ; 0Þ; ð3Þ

where ϕð~xÞ is the argument of the stereographic projection
of f into R3, gives a director field containing a defect in the
form of a ðp; qÞ torus knot embedded into a standard
cholesteric texture (or nematic for q0 ¼ 0). While the
polynomial given only generates torus knots, an extension
to other polynomials [16,48] may be used to generate an
entire zoo of knots and links. Furthermore, the texture of (3)
is planar, and cannot correspond to a topological class
containing Skyrmion tubes; these additional topological
classes may be produced by a generalization involving
appropriate meromorphic functions [49]. The topologically
distinct planar textures for links may be constructed using
conjugated polynomials [49,50]. For example, the choices
ðz1 þ z2Þðz1 − z2Þ and ðz1 þ z2Þðz2 − z1Þ give planar rep-
resentatives of the Lk ¼ þ1 and Lk ¼ −1 textures for the
Hopf link, respectively [51]. To simulate the system, we use

FIG. 4 (color online). Simulation results showing metastable
Lk ¼ þ1 Hopf link in a cholesteric, found by numerical
relaxation of the Landau–de Gennes free energy. (a) and (c)
Vertical and horizontal views of the knotted configuration; the
pitch direction is denoted by p. Note that the size of the defects is
comparable to 2π=q0. (b) PT surface plotted from simulation
results. The two sheets correspond to a bulk cholesteric in which
the link is embedded. The topological class of the link can be
found by looking at the induced orientation on the link compo-
nents by the PT surface and then computing the linking number.
The legend at the bottom shows the relationship between surface
coloring and director orientation. The inset shows the twist profile
of the disclinations.
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the standard Landau-de Gennes theory. We embed the
director into a Q tensor as Q ¼ sðn ⊗ n − 1

3
IÞ and take

the relaxation dynamics ∂tQ ¼ −ΓðδF=δQÞ, where F is
the standard Landau–de Gennes free energy [52]. The
simulations were run on a 1923 grid with typical parameter
values.
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