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We show that quantum square ice—namely, the two-dimensional version of proton or spin icewith tunable
quantum tunneling of the electric or magnetic dipole moment—exhibits a quantum spin-liquid phase
supporting fractionalized spinons. This phase corresponds to a thermally induced, deconfined quantum
Coulomb phase of a two-dimensional lattice gauge theory. It emerges at finite, yet exceedingly low
temperatures from the melting of two distinct order-by-disorder phases appearing in the ground state: a
plaquettevalence-bondsolid for lowtunneling;andacantedNéel state for stronger tunneling.The latterphases
appearvia thehighlynonlineareffectofquantumfluctuationswithin thedegeneratemanifoldof ice-rule states,
and they can be identified as the two competing ground states of a discrete lattice gauge theory (quantum link
model) emerging as the effective Hamiltonian of the system within degenerate perturbation theory.
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Introduction.—Frustrated magnetism represents a
unique test bed for the investigation of quantum effects
at the macroscopic scale [1,2]. Indeed classical models of
frustrated magnetism can exhibit macroscopically degen-
erate ground states (so-called classical spin liquids [2]),
seemingly violating the third principle of thermodynamics.
As a consequence, only quantum fluctuations can decide
what ground state and macroscopic low-energy physics will
ultimately emerge in the system. The exponential degen-
eracy of the ground state is a feature of fundamental models
of magnetism in condensed matter, such as spin ice—the
magnetic analog of proton ice [3]—whose ground states
satisfy a local constraint (the so-called ice rule), and it is
also a feature of lattice gauge theories (LGTs) [4,5] inspired
by high-energy physics. The ground-state ambiguity left
over by classical physics can be resolved by quantum
fluctuations via a most appealing scenario, namely, the
appearance of a quantum spin-liquid state without long-
range order, and featuring fractionalized excitations [2].
This mechanism is in fact proven rigorously for lattice
gauge theories [4–6], in which spin-liquid states correspond
to a deconfined phase of the theory, and unbound charges
correspond to fractionalized excitations. In quantum mag-
netism the situation is more complex, as quantum fluctua-
tions can often promote long-range order in the ground
state (as well as conventional excitations) via an order-
by-disorder mechanism [7,8]; yet mounting numerical and
experimental evidence is appearing in favor of spin-liquid
phases in fundamental models of magnetism [9], including
quantum spin ice [10–14], in relationship with deconfined
phases of an emerging LGT.
In the present Letter, we show that square ice—the two-

dimensional version of pyrochlore ice, realized in very
different experimental settings [15]—exhibits an intriguing

competition between order-by-disorder and spin-liquid
physics, when quantum tunneling of the electric or mag-
netic dipole moments of ice is introduced in the system. On
the one hand, the ground state exhibits two competing
order-by-disorder phases, that can be identified with the
confined phases of an emergent U(1) LGT. Yet an arbi-
trarily low temperature can drive a transition towards a
so-called quantum Coulomb phase [10,13] supporting
deconfined spinons as elementary excitations, and corres-
ponding to a finite-temperature realization of a U(1) spin
liquid in two dimensions.
Quantum square ice.—Square spin ice with quantum

tunneling of the magnetic moments can be modeled as the
antiferromagnetic transverse-field Ising model (TFIM) on a
checkerboard lattice [Fig. 1(a)]:

H ¼ J
X

⊠
ðσz⊠Þ2 − Γ

X

i

σxi ; ð1Þ

where the first sum runs over the crossed plaquettes
(vertices) of the checkerboard lattice [see Fig. 1(a)], and
σz⊠ ¼ P

i∈⊠σzi ; σ
xðzÞ
i are Pauli matrices. In classical square

ice (Γ ¼ 0), the ensemble of degenerate ice-rule ground
states—with vanishing magnetization on each crossed
plaquette—realizes a 2d Coulomb phase [16]. Such a
phase is characterized by algebraic spin-spin correlations
(decaying as r−2) [17] with a peculiar signature in the spin
structure factor in the form of pinch points [18], and by
deconfined monopolelike excitations. When introducing
quantum tunneling via a transverse field Γ, a perturbative
treatment of the quantum term to the lowest order leads to a
model of frustrated compact lattice QED (fcQED) for a
discrete (S ¼ 1=2) gauge field [10,19]—also known as the
U(1) quantum link model or U(1) gauge magnet [20] in the
high-energy physics literature:
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Hð4Þ
eff ¼ −K4

X

□

F□ þ const: ð2Þ

Here the sum runs over the (uncrossed) plaquettes, and
F□ ¼ σþ1 σ

−
2 σ

þ
3 σ

−
4 þ H:c: is the plaquette flip operator (the

indices run counterclockwise around the plaquette). The
coupling constant has the value K4 ¼ 20½Γ4=ð2JÞ3�, where
the factor of 20 accounts for all the possible sequences of
elementary spin flips leading to a plaquette flip, and creating
either one or two monopole pairs as virtual intermediate
excitations [21]. fcQED can be suspected to undergo
confinement due to the Polyakov mechanism valid for
ordinary (nonfrustrated) compact QED in d ¼ 2 [19,32].
This expectation is indeed verified by numerics [33–35],
finding that the Coulomb phase is removed from the ground
state of fcQED in favor of a gapped plaquette valence-bond
solid [pVBS—see Fig. 1(b)]. As we will see, considering a
field of arbitrary strength leads to a richer physics, related to
the emergence of a more complex emerging LGT.
Method.—A Trotter-Suzuki decomposition [36] with M

Trotter steps at an inverse temperature β maps the quantum
partition function of quantum square ice, Eq. (1), onto the
partition function of stacked spin-ice planes with reduced
couplings J=M, and interacting via ferromagnetic cou-
plings of strength Jτ ¼ − log½tanhðβΓ=MÞ�=ð2βÞ. This
mapping has the advantage that the efficient loop algorithm
for spin ice [37] can be generalized to the quantum context,
where it takes the form of a membrane algorithm: a loop of
spin flips (or an open string in the presence of monopole
excitations) is first created at a given imaginary time, and
then propagated along the imaginary-time direction as in a
1d Wolff algorithm [21]. The resulting dynamics allows us
to explore efficiently the delicate coexistence between
kinematic constraints and quantum fluctuations; the intro-
duction of the membrane move turns out to be crucial for
the correct equilibration of the system, similar to what is
observed for the loop move in the classical case. Our
quantum Monte Carlo (QMC) simulations are performed
on L × L lattices with sizes ranging up to L ¼ 32.
Phase diagram.—Figure 2 shows the phase diagram of

the system in the field-temperature plane. Notice the

logarithmic temperature scale, emphasizing that salient
features occur at very low temperatures. Upon increasing
the field, the system’s ground state is driven from a Coulomb
phase for Γ ¼ 0 to a pVBS phase, for Γ=J ≲ 0.25, to a
canted Néel phase for 0.25≲ Γ=J ≲ 0.55, and finally to a
quantum paramagnetic phase for Γ=J ≳ 0.55. The pVBS
phase and Néel phase melt at a finite critical temperature,
which has been determined as described below.
VBS transition and fcQED.—As already mentioned, the

appearance of a pVBS phase has been proven numerically
[33,34] for fcQED, emerging as the effective Hamiltonian
of quantum square ice at the lowest (4th) order in the field.
The characteristic ordered structure of the pVBS state
corresponds to the appearance of a staggered pattern of
local resonances between a plaquette Néel state jNi ¼
j↑1↓2↑3↓4i and its spin-flipped partner jN̄i [Fig. 1(b)].
Such an ordered structure can be captured by the flippability,
namely, the average value of the projector onto flippable
(¼ Néel) plaquette states f□ ¼ hjNihNj þ jN̄ihN̄ji ¼
hF2

□
i. Detecting directly the onset of pVBS order for the

TFIMHamiltonian of Eq. (1) turns out to be prohibitive from
the numerical point of view, given that pVBS order occurs at
a temperature T=J ∼ ðΓ=JÞ4 lying several orders of magni-
tude below the energy scale of the spin-spin coupling. We
rather focus on the effective Hamiltonian Eq. (2), and
calculate its thermal phase transition to pVBS order via
QMC calculations [21]—for such a system, the membrane

FIG. 2 (color online). (a) Phase diagram of quantum square ice;
boundaries of the pVBS phase (TpVBS) and of the canted Néel
phase (TN) have been obtained as described in the main text; the
dashed line marks a crossover from coherent to diffusive spinon
or monopole dynamics at the energy scale set by the transverse
field Γ. (b) Static structure factor for a system with L ¼ 24,
corresponding to the (Γ, T) parameters as indicated in panel (a).

pVBSice-rule state 
with a monopole pair

(a) (b) (c)

FIG. 1 (color online). (a) Checkerboard lattice, showing the
notation for the lattice-site indices and for the vertex indices, as
well as a classical ice-rule configuration plus a monopole pair; (b),
(c) Sketch of the ordered ground-state phases of quantum square
ice. The squares in the pVBS phase indicate resonating states of the
kind ðjNi þ jN̄iÞ= ffiffiffi

2
p

(see main text for the notation).
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algorithm is the only possible update compatible with the
kinematic constraints. Using the crossing of the Binder
cumulants for the staggered flippability [21] we determine
the critical temperature for the melting of the pVBS state as
TpVBS=J ¼ 1.80ð3ÞðΓ=JÞ4. This estimate allows us to draw
the curve shown in Fig. 2.
Néel transition.—In the case of the Néel phase, we

have considered systematic finite-size extrapolations
of the staggered magnetization, estimated as ms ¼
ð1=L2ÞhjPið−1Þiσzi ji, where L is the linear size of the
system. Figure 3 shows polynomial fits to the finite-size
dependence of the magnetization, exhibiting a very small
(∼10−2) albeit finite staggered moment in the thermody-
namic limit. The vanishing ofms leads to the estimate of the
line of Néel critical temperatures TN . The upper critical
field estimated via the vanishing of the order parameter is
found to be consistent with the position of an inflection
point in the transverse magnetization (see Fig. 5).
Néel phase from the effective Hamiltonian.—The appear-

ance of the Néel phase is a highly nontrivial order-by-
disorder phenomenon, as it is associated with diagonal order
induced by a purely nondiagonal operator (the transverse
field term)—and, paradoxically, it appears only if the
transverse field is sufficiently strong, while at weak fields
the order is rather off diagonal. Onemight suspect that such a
phase is already present in the classical (S → ∞) limit of the
TFIM due to an order-by-disorder mechanism induced by
thermal fluctuations; we have explicitly checked this aspect
[21] and we do not find any form of magnetic order in the
classical, continuous spin version of Eq. (1) at small but
finite temperature. Moreover the Néel phase is not stabilized
by harmonic quantum fluctuations, as verified explicitly
within spin-wave theory in Ref. [38]. We can only gain
understanding of this phase when going beyond the lowest-
order perturbative Hamiltonian of Eq. (1), and considering
further perturbation terms. One can do so systematically
following, e.g., Ref. [39]—see Ref. [21] for an extensive
discussion. To gain a quantitative understanding of the Néel
phase, it turns out that it is necessary to push the perturbative
expansion up to the 8th order in the magnetic field; to this
order the effective Hamiltonian—obtained by considering

exclusively virtual processes involving the creation or
annihilation of a single monopole pair—reads

Hð8Þ
eff ¼ −K4

X

□

F□ − K6

X

l∈L6

F6l

− K8

X

l∈L8

F8l − K0
8

X

□

F2
□
þ const: ð3Þ

Here Fnl ¼ σþ1 σ
−
2…σþn−1σ

−
n þ H:c: is the operator flipping

the spins (in alternate fashion) on a loop l, belonging to the
family Ln of loops of length n. The coefficients Kn ¼
anΓn=ð2JÞn−1 are given explicitly in Ref. [21]. The last term
is a purely diagonal term, which amounts to counting the
number of flippable plaquettes, and therefore its energy is
minimized by the Néel state, being the maximally flippable
state [7,40]. Hence, we can expect that the pVBS-Néel
transition is fundamentally drivenby the competition between
the 4th order term and the diagonal 8th order term [21].
Quantum Coulomb phase.—Finally, we focus on the

thermally disordered phase in quantum square ice. As
already mentioned in the introduction, pinch points with
zero width in the static structure factor SðqÞ ¼
ð1=NÞPije

iq·ðri−rjÞhσziσzji are a consequence of algebraic
spin-spin correlations of the classical Coulomb phase of 2d
spin ice [18], which are in turn a characteristic feature of the
spatial correlations of the divergenceless magnetization
field of square ice [21]. Figure 2(b), A and B and Fig. 3
show that, for a weak field and low temperatures, pinch-
point features (with a resolution limited width up to system
sizes L ¼ 24, Fig. 3) survive in the structure factor. This
shows that a finite temperature minimally affects correla-
tions in this regime, as well as the finite concentration of
monopoles induced by the transverse field. Indeed field-
induced monopole pairs are strongly off resonant (as
Γ ≪ 2J), and hence they form bound states, screening
each other and leaving correlations unaffected.
The Coulomb-phase correlations exhibited at low T and

finite Γ are a clear indication of the deconfined nature of
its excitations. Indeed, despite the confined nature of the
ground-state phases of quantum square ice, the temperature
leads to a confinement-deconfinement transition [19] when it
exceeds the critical temperatures TpVBS and TN for the
melting of the low-T ordered phases. We can directly probe
the fractionalization of single spin flips into monopoles by
performing simulations in a modified ensemble, determining
the statistical properties of a pair of monopoles injected in
the system via a spin flip, and subject to the quantum and
thermal fluctuations of the underlying spin network (which
represents the gauge field—see below). If the QMC dynam-
ics is constrained to preserve the two monopoles [41], one
can reconstruct the probability pðrÞ that the monopoles are
at given distance r [normalized so that

R
drð2πrÞpðrÞ ¼ 1].

Figure 4 shows that the probability pðrÞ at a temperature
T=J ¼ 10−2J is minimally affected by the presence of
quantum fluctuations—both for Γ ¼ 0 and Γ ≈ 0.2J we

10-6

10-5

10-4

10-3

10-2

10-1

/2 3 /4

S
(q

x,
0)

qx

=0.074 J
=0.265 J
=0.297 J
=0.489 J

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.05

(a) (b)

 0.1

m
s

1/L

=0.227J
=0.360J
=0.547J
=0.600J

FIG. 3 (color online). (a) Scaling of the Néel order parameter at
T=J ¼ 10−2; solid lines are fits to cubic polynomials; (b) Scans in
the static structure factor at T=J ¼ 5 × 10−3 and L ¼ 24, show-
ing the evolution of the pinch-point width.
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find that pðrÞ ∼ r−a with a ≈ 0.4, which implies deconfined
pairs with hri ¼ ∞ in the thermodynamic limit.
Despite sharing the same deconfinement properties, a

fundamental difference exists between the monopole exci-
tations at finite Γ with respect to those of the classical limit
Γ ¼ 0. Indeed Γ represents a hopping term for the monop-
oles, which are therefore turned into coherent spinons with
a finite bandwidth. The finite bandwidth for spinons can be
detected numerically by looking at the dispersion of the
minimum gap Δq for spin flips, obtained via the asymptotic
decay of the imaginary-time correlation function
hSxqð0ÞSx−qðτÞi ∼ expð−ΔqτÞ [21]. Δq provides the lower
bound to the two-spinon continuum in the dynamic
structure factor, and it clearly shows a dispersion with
bandwidth ∼Γ around the classical spin-flp energy of 4J.
Because of the evidence of thermally deconfined spinons,
we call this regime a thermally induced quantum Coulomb
phase, whose short-range properties are identical to those
of a U(1) spin-liquid phase (the latter being realized strictly
speaking only in 3d at T ¼ 0 [10]). In particular we expect
an algebraic spin-liquid behavior to persist up to a length
lth ∼ expð2J=TÞ given by the average distance between
thermally excited spinon pairs; it is easy to verify that this
length can be astronomically large. The quantum Coulomb
phase transforms smoothly into the classical Coulomb
phase for temperatures T ∼ J, at which the de Broglie
wavelength of the spinons becomes smaller than the lattice
step, and their dynamics becomes diffusive—as also
revealed by QMC calculations [21].
Gauge mean-field theory.—The picture of a quantum

Coulomb phase is further corroborated by a theoretical
treatment of quantum square ice based on the recently
introduced gauge mean-field theory (gMFT) [13]. The
latter approach formally splits the S ¼ 1=2 spin degrees
of freedom into a “matter” part—the spinon field, repre-
sented by a bosonic field of integer modulus Φr ¼ eiϕr—
existing on the centers r of the vertices, and a gauge
part—the S ¼ 1=2 spin gauge field sαrr0 , with α ¼ x, y,
z—living on the sites of the lattice which are in between two
vertices r, r0 [see Fig. 1(a)]. A mean-field decoupling of the
gauge field with respect to the spinon field leads to the

following Hamiltonian, H ≈HΦ þHs þ const, [21] with
HΦ ¼ −2Γ

P
hrr0ihsxrr0 i cosðϕr − ϕr0 Þ þ 4J

P
rQ

2
r andHs ¼

−2Γ
P

hrr0ihcosðϕr − ϕr0 Þisxrr0 . Here Qr is the conjugate
(charge) operator to the spinon phase, ½ϕr; Qr� ¼ i. In
particular Hs is readily minimized by a state with
hsxi ¼ 1=2, reducing the spinon Hamiltonian HΦ to a
quantum rotor Hamiltonian on the square lattice. Within
this mapping the transverse magnetization is simply related
to the kinetic energy of the bosonic spinons, namely,
hσxi ¼ hcosðϕr − ϕr0 Þi. Remarkably, the quantum rotor
Hamiltonian admits a numerical solution via QMC [21],
which allows us to compare quantitatively the predictions of
gMFT with the exact results coming from the QMC
simulation of quantum square ice. This comparison is made
in Fig. 5, clearly showing that T ¼ 0 gMFT is quantitatively
accurate in the quantum Coulomb phase, while it deviates
from the numerically exact results for quantum square
ice precisely when the system enters the Néel phase. In
particular, gMFT represents the low-field phase for the matter
sector of quantum square ice as a bosonic Mott insulator,
with a gap corresponding to the spinon gap, and spinon pairs
representing particle-hole pairs of the Mott insulator. The
elementary excitations of a bosonic Mott insulator are
gapped, deconfined particle-hole pairs forming a continuum
[42]. Therefore, this result further corroborates the picture in
which the excitation spectrum for the matter sector of the
quantum Coulomb phase consists of a continuum of decon-
fined spinons.
Experimental realization.—The most prominent exper-

imental platform for the realization of quantum square ice is
represented by microtrapped ions, which naturally imple-
ment transverse-field Ising models in different planar
geometries [43]; an alternative scheme might rely on
tailored nanomagnets [44]. The long-range interactions
in these systems are expected to have a marginal impact
on the quantum Coulomb phase as long as the low-T
symmetry breaking phase melts at a critical temperature
Tc ≪ Γ. This suggests that atomic physics or solid-state
quantum simulators offer promising platforms for the
implementation of fundamental phenomena of lattice gauge
theories, as recently proposed in the context of neutral
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FIG. 5 (color online). Transverse magnetization of quantum
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(SF) in the corresponding quantum rotor model (see text).
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atoms [45–47], with special emphasis on U(1) quantum
link models [35,45,47].

We acknowledge fruitful discussions with P. Holdsworth
and F. Bègue, and the PSMN (ENS Lyon) for computer
support.
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