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Electron supercollimation, in which a wave packet is guided to move undistorted along a selected
direction, is a highly desirable property that has yet to be realized experimentally. Disorder in general
is expected to inhibit supercollimation. Here we report a counterintuitive phenomenon of electron
supercollimation by disorder in graphene and related Dirac fermion materials. We show that one can use
one-dimensional disorder potentials to control electron wave packet transport. This is distinct from known
systems where an electron wave packet would be further spread by disorder and hindered in the potential
fluctuating direction. The predicted phenomenon has significant implications in the understanding and
applications of electron transport in Dirac fermion materials.
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Dirac fermion materials are currently one of the most
intensively investigated systems in condensed matter physics
and materials science [1–6]. Their conical electronic struc-
ture near the Dirac points give rise to massless neutrinolike
two-dimensional electron states [7,8]. Due to the chiral
nature of these Dirac fermion states, electrons interact with
external potential in unusual ways, manifesting various
interesting characteristics. In graphene, phenomena such
as absence of backscattering by long-range potentials [9,10],
Klein tunneling [11], weak antilocalization [12–15], angle-
dependent electron transmission [16,17] and directional
filtering of electrons due to strong angle-dependant locali-
zation exponent [18] by one-dimensional disorder in gra-
phene superlattices, and supercollimation of electron beams
by somespecific one-dimensional external periodic potentials
[19] have been observed or predicted. Here we present
another surprising, counterintuitive electron transport phe-
nomenon in graphene and related two-dimensional Dirac
fermion systems, made possible by the carriers’ unique linear
dispersion relation and chiral nature. We discovered that
electron supercollimation can be induced by one-dimensional
disorder potentials. An electron wave packet is guided to
propagate virtually undistorted along the fluctuating direction
of the external one-dimensional disorder potential, indepen-
dent of its initial motion, as long as the disorder is large
enough to produce a wedgelike dispersion in the band
structure within which the k components of the wave packet
are contained. To our knowledge, this phenomenon was not
known in any medium previously. Further, we find, for
graphene in an external periodic potential that doesn’t satisfy
the supercollimationconditionpredicted inRef. [19], addition
of disorder would enhance collimation. The more is the
disorder, the better is the supercollimation. This robust novel
phenomenon has significant implications in the fundamental

understanding of transport in graphene, as well as in other
materials with Dirac cone physics (such as surface states of
topological insulators [5] or possibly certain photonics
crystals [6]), and has the potential to be exploited in the
design of devices based on these materials.
We first discuss the predicted supercollimation by

disorder in Dirac fermion materials using results from
direct simulations (Fig. 1) and then derive the phenomenon
from perturbation theory. For the low energy carriers in
graphene [Fig. 2(a)] and an external potential VðxÞ that
depends only on x, we may set up an effective Hamiltonian
for the electronic states [8]

H ¼ v0σxpx þ v0σypy þ VðxÞI: ð1Þ
Here v0 is the band velocity of the electron, σi is the i-
component Pauli matrix, pi is the i-direction momentum
operator, and I is the identitymatrix in the spacedescribing the
pseudospin components of the electron wave function. We
may neglect intervalley scattering for VðxÞ that is smooth on
the interatomic scale. We carried out direct numerical simu-
lations on the Hamiltonian in Eq. (1) using a spatially-
correlated Gaussian disorder potential for VðxÞ. Such a
disorder potential is characterized by a two-point correlation
function havingVðx1ÞVðx2Þ ¼ Δ2e−jx1−x2j=lc , whereΔ is the
magnitude of the disorder fluctuation and lc is the disorder
correlation length. The overline represents the ensemble-
averaged value. Figure 1(a) shows one realization of VðxÞ in
unit of Δ. The potential is spatially correlated so that on
average it is nearly the same value within a length scale of lc.
Figure 1(b)–(d) demonstrate supercollimation in a

Gaussian wave packet propagation simulation. Using 60
different realizations of the disorder potential VðxÞ with
lcΔ ¼ 4πℏv0,we numerically calculated the electron density
ρðr; tÞ using an initial Gaussian density packet with initial
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center of mass wave vector k0 ¼ π=5lc and a half width of
r0 ¼ 5lc. Figure 1(c) and 1(d) show the evolution of the
electron density ρðr; tÞ from the initial electron density
shown in Fig. 1(b). In the absence of a disorder potential,
the Gaussian wave packet propagates along the initial center
of mass wave vector direction marked by the white arrow
and spreads sideway. Its spread angle at which the electron
density is half the maximum is 48.6°. With the one-dimen-
sional disorder potential VðxÞ, the electron package prop-
agates nearly unspread along the potential fluctuation
direction, which is x, regardless of the initial velocity
direction. The spread angles are 0.5° and 0.7° at an incident
angle (measured from the x axis) of 0° and 45°, respectively.
A very tiny fraction of the electron density forms a super-
collimated trail [barely visible in Fig. 1(d)], which increases
with increasing incident angle. The samebehavior is observed
in simulations within a tight-bindingHamiltonian framework
for graphene (see Supplemental Material [20]).

We present now an analytic derivation of the pheno-
menon. We separate the Hamiltonian in Eq. (1) into
two terms, H ¼ H0 þH1, with H0 ¼ v0σxpx þ VðxÞI
and H1 ¼ v0σypy. If H0 dominates over H1 (to be defined
more precisely below) as in the case of an extended
low-energy wave packet in real space in a disorder VðxÞ,
we may regard H1 ¼ v0σypy as a perturbation.
We first show that the electron dynamics in two-

dimension governed byH0 ¼ v0σxpx þ VðxÞI alone yields
supercollimation along the direction. The term v0σxpx has
two eigenstates (s ¼ �1) as shown in Fig. 2(b). By a unitary

transformation ofU¼ 1ffiffi
2

p
�
1 1

1 −1
�
,U†v0pxσxU is diagonal

with eigenvalues sℏv0kx with s ¼ �1, and eigenvectors

1ffiffiffi
A

p
� eik·r

0

�0
and 1ffiffiffi

A
p

�
0

eik·r
�0
, respectively,whereA is the area

of the sample and the prime notation here indicates a matrix
or vector in the unitary-transformed or pseudospin basis.
These are chiral states moving forward (s ¼ 1) or backward
(s ¼ −1) with a speed of v0 and a pseudospin aligned along
the propagation direction. The retarded Green’s functionG0

0

of H0
0 ¼ U†H0U in coordinate space is given by

G0
0ðr;r0;tÞ¼

1

iℏ
θðtÞδðy−y0Þ

×

�
δðx−x0−v0tÞαðx;x0Þ 0

0 δðx0−x−v0tÞαðx0;xÞ

�

ð2Þ

with

αðx; x0Þ ¼ exp

�
1

iℏv0

Z
x

x0
Vðx1Þdx1

�
ð3Þ

(see SupplementalMaterial [20] for the derivation of Eq. (2);
G0

0 is consistent with the transfer matrix in Ref. [21].) The
Green’s function determines the time evolution of the
electron wave function and density through

(a) (b)

E

s=-1
s=1

E

FIG. 2 (color online). (a) Low-energy electronic band structure
of graphene near a Dirac point. (b) Electronic band structure
of an initial two-dimensional model Hamiltonian, Hin ¼ v0σxpx,
where v0 is the band velocity, σx is the x-component Pauli matrix
and px is the x-direction momentum operator. This model
Hamiltonian generates two chiral eigenstates which correspond
to forward-moving (s ¼ 1) and backward-moving (s ¼ −1)
states with a speed of v0 and a pseudospin parallel to sx̂.

(a) (b)

(c)

(d)

FIG. 1 (color online). (a) A realization of spatially correlated
Gaussian disorder potential VðxÞ with a magnitude Δ and
correlation length lc. (b) Initial wave packet with electron density
in a Gaussian shape in coordinate space with initial center
of mass wave vector k0 ¼ π=5lc and a half width of r0 ¼ 5lc.
(c)–(d) Electron density distribution in coordinate space at time
t ¼ 50lc=v0 in pristine system (left panel) and in disordered
system (right panel) with initial center of mass wave vector
direction (white arrow) pointing with respect to the x axis at 0°
(c) and 45° (d).
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ψ 0ðr; tÞ ¼
Z

dr0iℏG0ðr; r0; tÞψ 0
0ðr0; t ¼ 0Þ; ð4Þ

and

ρðr; tÞ ¼ tr½ψ 0ðr; tÞψ 0†ðr; tÞ�; ð5Þ

where the trace is definedwith respect to the2 × 2 pseudospin
subspace. (We recall that ψ 0ðr; tÞ is a two-component spinor
function and the total density ρðr; tÞ is a sum over densities
from the two components.) As seen from the diagonal-matrix
form of G0

0ðr; r0; tÞ in Eq. (2), scattering between two states
with different chirality (or group velocity) is not allowed for
any arbitrary external potential VðxÞ, if we neglect H1.
Consequently, for the Hamiltonian H0

0, the amplitude of
any initial wave function ψ 0ðr; t ¼ 0Þ with pseudospin s
moves at a velocity of sv0, maintaining its initial shape,
although the phase of the wave function is changed by the
interactionwith the potentialVðxÞI. The electron density of a
wave packet with a pseudospin s thus also propagates with a
velocity of sv0 along the x direction, maintaining its original
shapeat t ¼ 0, again, ifH0

1 isneglected.To illustrate thispoint,
ifwe take an initialGaussianwave packetwith initial center of
mass wave vector k0 and a half width of

ffiffiffi
2

p
r0,

ψ 0ðr; t ¼ 0Þ ¼ 1ffiffiffiffiffiffi
2π

p
r0

�
1

0

�0
exp

�
− r2

4r20
þ ik0 · r

�
; ð6Þ

then, as a function of time, the electron density is given by
(from Eqs. (4) and (5))

ρð0Þðr; tÞ ¼ 1

2πr20
exp

�
− jr − v0tx̂j2

2r20

�
: ð7Þ

The disorder potential VðxÞ generates a random phase
accumulation for the electron which may be loosely thought
of as an effective elastic mean free path ls or elastic collision
time τ for electrons governed byH0

0. The quantity ls may be
extracted from Ḡ0

0. In the expression forG
0
0 given by Eq. (2),

the quantity αðx; x0Þ incorporate all the effects of VðxÞ.
For a random potential, translation symmetry is restored by
ensemble average [22], so that αðx; x0Þ ¼ αðx − x0Þ. The
form of α in Eq. (3) dictates that αðx − x0Þ has its maximum
at x ¼ x0, and decreases as jx − x0j increases since the phase
of αðx; x0Þ fluctuates from one member to another in an
ensemble. If we assume that αðx; x0Þ decayswith a full width
at half maximum of ls, then G0

0ðr − r0; tÞ decays with the
same mean-distance ls. The effective elastic collision time τ
is obtained by considering Ḡ0

0 in Fourier space. A Fourier
transform of Eq. (2) yields

G0
0ðk;ωÞ ¼

Z
dE0 1

ℏω − E0 þ iη

×

�
A0ðE0 − ℏv0kxÞ 0

0 A0ðE0 þ ℏv0kxÞ

�
ð8Þ

with

A0ðEÞ ¼
1

2πℏv0

Z
dx αðxÞ exp

�
i
E
ℏv0

x

�
: ð9Þ

The function A0ðE0 − sℏv0kxÞ here plays the role of the
spectral function A0ðs; k;ωÞ. Due to the decay of αðxÞ,
A0ðs; k;ωÞ is maximum at ω ¼ sv0kx and has a finite width,
owing to the finite effective elastic collision time, which is
independent of the momentum k. From the full width at half
maximum of A0ðs; k;ωÞ, we can deduce τ. For example, for
a spatially correlated Gaussian disorder, one obtains

αðxÞ ¼ exp

�
−
�
lcΔ
ℏv0

�
2
�
exp

�
− jxj

lc

�
− 1þ jxj

lc

�	
: ð10Þ

Let us now consider the effects ofH1 ¼ v0σypy and show
that electron supercollimation still persists over a large
distance L0. We show this by examining the time evolution
of the electron density ρðr; tÞ by the full Hamiltonian
H0 ¼ U†HU from a series expansion of the wave function
up through third order in H0

1 ¼ U†H1U ¼ −v0pyσy,
i.e., ψ 0ðr; tÞ ≈P

3
i¼0 ψ

0ðiÞðr; tÞ, where the change in the
wave function in ith order is given by ψ 0ðiÞðr; tÞ. Then,
ρðr; tÞ ≈P

3
i¼0 ρ

ðiÞðr; tÞ with ρðiÞðr;tÞ≡P
3
j;k¼0

jþk¼ i

ρðiÞjk ðr;tÞ

and ρðjþkÞ
jk ðr; tÞ ¼ tr½ψ 0ðjÞðr; tÞψ 0ðkÞ†ðr; tÞ�. The zeroth-order

term ρð0Þ, given by Eq. (7), is already shown to be a
collimated electron density with unchanging shape. Up to
the third order in H0

1, it is straightforward to show that all
terms in the above expression for ρðr; tÞ, except one, retain
the initial extent of the wave packet and move along the

x direction with the same velocity. Only the ρð2Þ11 ðr; tÞ term
shows shape deviation, but it still does not spread along the
y direction and is collimated to move along the x direction
(for the details, see Supplemental Material [20]). To illus-
trate this, for r0 > ls and with an initial wave packet given

by Eq. (6), ρ̄ð2Þ11 ðr; tÞ is

ρ̄ð2Þ11 ðr; tÞ ≈
ls

2
ffiffiffiffiffiffi
2π

p
r0

�
k20y þ

y2

4r40

�
e−y2=2r20

�
−Erf

�
x − v0tffiffiffi

2
p

r0

�

þ Erf

�
xþ v0tffiffiffi

2
p

r0

��
: ð11Þ

This corresponds to a strip of density of width 2r0
determined by the initial wave packet but extended from

v0t to −v0t in the x̂ direction. If we compare
R
drρð2Þ11 ðr; tÞ

with
R
drρð0Þðr; tÞ, R

drρð2Þ11 ðr; tÞ <
R
drρð0Þðr; tÞ for

ð2k20y þ 1=ð2r20ÞÞlsv0t < 1, giving rise to supercollimation
with little diminishment of the intensity of the original
Gaussian profile over a distance of roughly L0 ¼ v0t ¼
1=ð2lsk20y þ ls=ð2r20ÞÞ. For example, for a disorder potential
that gives a broadening of 0.2 eV in the spectral function,
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a wave packet with r0 > 40 nm ≈ 250acc and a center of
mass wave vector such that ℏv0k0y < 0.01 eV will undergo
supercollimation for nearly a micrometer.
We propose a possible experiment to demonstrate the

predicted electron supercollimation phenomenon by meas-
uring the conductance G in a geometry shown in Fig. 3(a).
In this set up, graphene or a Dirac fermion material is in
contact with two electrodes that are separated at a distance
L along the μ̂ direction. This direction is at an angle θ with
respect to the one-dimensional potential fluctuation direc-
tion x̂. The conductance G between the two electrodes is,
according to the Kubo formula [23,24],

GðL; θÞ ¼
Z

drdr0σμμðr; r0; EFÞδðμÞδðμ0 − LÞ; ð12Þ

with conductivity

σμμðr; r0; EFÞ ¼
πℏ

ð2πiÞ2 tr
h
jμðrÞðGR−Aðr; r0; EFÞÞ

× jμðr0ÞðGR−Aðr0; r; EFÞÞ
i
; ð13Þ

where j ¼ ev0σ [25]. The quantity GR−A is defined as
GR−A ¼ GR −GA with GR and GA being the retarded
and advanced Green’s functions, respectively. If we expand
the ensemble-averaged conductance GðL; θÞ up to and
including the first-order term in H1 (see Supplemental
Material [20]),

GðL; θÞ ∝ cos2θ þ sin2θ exp½−2L=ðls cos θÞ�
× cosð2EFL=ðℏv0 cos θÞÞ ð14Þ

This is dramatically distinct from that of a gated pristine
graphene in the ballistic regime, in which case the con-
ductance GðL; θÞ is constant regardless of the orientation
angle θ.
The ensemble-average dispersion relation of the elec-

trons in graphene is strongly and anisotropically renormal-
ized in the presence of the random potential VðxÞ for
jkyj < 1=ls (for details, see Supplemental Material [20]),
forming a wedgelike structure for the energy surface EðkÞ.
We demonstrate this effect by calculating the ensemble-
average spectral function. Using 60 different realizations of
the disorder with lcΔ ¼ 4πℏv0, we numerically calculated
ImG0ðk;ωÞ. Figure 4 shows the 60-ensemble-average
spectral function, Aðk; EÞ ¼ − trImG0ðk; EÞ=π where the
trace is with respect to the 2 × 2 pseudospin subspace. Along
the k ¼ ðkx; 0Þ line, shown in Fig. 4(a), the dispersion
relation is linear and it follows the E ¼ �ℏv0kx lines, which
is the dispersion relation of the pristine system. However,
along the k ¼ ð0; kyÞ line, shown in Fig. 4(b), the band
structure is strongly renormalized near the Dirac point and
becomes flat. The anisotropic renormalization of the band
structure can be demonstrated more clearly by a contour plot
of Aðk; EÞ on the kx-ky planewithE ¼ 2ℏv0=ls, as shown in
Fig. 4(c). On this constant energy plane, constant amplitude

FIG. 3 (color online). (a) Schematic diagram of experimental
setup for proposed conductance measurement. Two electrodes are
in contact with graphene under one-dimensional disorder poten-
tial fluctuating along the x̂ direction. The electrodes are separated
by a distance L along the μ̂ direction. (b) Calculated conductance
GðL; θÞ (in a unit of 2Nνe2=h where Nν is the number of
subbands due to the confinement along the ν direction at energy
EF) as a function of the angle θ in a pristine system in the ballistic
regime (red line) and in a system with one-dimensional disorder
potential (ls ≪ L) shown in (a) from Eq. (14) (blue line).

(a) (d)

(e)

(b)

(c)

FIG. 4 (color online). (a)–(c) Numerically evaluated spectral
function, Aðk; EÞ ¼ −trImG0ðk; EÞ=π, for lcΔ ¼ 4πℏv0 along
the ky ¼ 0 line (a), along the kx ¼ 0 line (b), and on the
E ¼ 2ℏv0=ls plane with ls ¼ ℏv0=Δ (c). (d)–(e) The line shapes
of the spectral function of H0 ¼ v0σxpx þ VðxÞI (red lines) and
of H0 þH1 (blue lines) with H1 ¼ v0σypy at various kx with
ky ¼ 0 (d), and at various ky with kx ¼ 0 (e).
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lines of Aðk; EÞ are oval shaped and stretched along the ky
direction. For spatially correlated Gaussian disorder poten-
tials, we can evaluate explicitly the spectral function of Ḡ0

0

from theFourier transformof Eq. (10). For this particular kind
of disorder, the line shape of the spectral function at different
kx with jk0yj < 1=ls is identical and τ∼ℏ=Δ (if lc > ℏv0=Δ).
As shown in Fig. 4(d), the line shape from Eqs. (9) and (10)
matches well with numerically simulated line shape from Ḡ0
at various kx with ky ¼ 0. However, as ky increases (at
kx ¼ 0), the numerically calculated spectral function deviates
from the line shape from αðxÞ owing to the effect of H0

1.
Electron beam supercollimation has been predicted theo-

retically in certain special graphene superlattices (SGS): a
graphene sheet modulated by a one-dimensional periodic
potential satisfying certain specific conditions [19]. In the
experimental realization of such SGS (e.g., using substrate
[26], controlled adatom deposition [27], ripples [28] under
perpendicular electric field [29,30], or gating [31]), it would
be unavoidable to have some disorders in the external
potential, which previously thought might impede the
supercollimation effect. However, we found in this study
that one-dimensional disorder along the periodic potential
modulation direction in fact enhances supercollimation
for an external periodic potential, with such enhancement
occurring even if the external potential does not exactly
satisfy the SGS supercollimation condition. For a detailed
discussion and numerical simulation of this phenomenon,
please see Supplemental Material [20].
In summary, through perturbation theory analysis and

numerical simulations,we havediscovered a highly counter-
intuitive phenomenon of electron supercollimation via
one-dimensional disorder potential in graphene and other
Dirac fermion materials. To our knowledge, this phenome-
non is not seen in any other systems.
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