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Using femtosecond time-resolved x-ray diffraction, we directly monitor the coherent lattice dynamics
through an ultrafast charge-density-wave-to-metal transition in the prototypical Peierls system K0.3MoO3

over a wide range of relevant excitation fluences. While in the low fluence regime we directly follow the
structural dynamics associated with the collective amplitude mode; for fluences above the melting
threshold of the electronic density modulation we observe a transient recovery of the periodic lattice
distortion. We can describe these structural dynamics as a motion along the coordinate of the Peierls
distortion triggered by the prompt collapse of electronic order after photoexcitation. The results indicate
that the dynamics of a structural symmetry-breaking transition are determined by a high-symmetry excited
state potential energy surface distinct from that of the initial low-temperature state.
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The notion of an ultrafast or nonthermal phase transition
has become a widely used concept in nonequilibrium solid
state physics. Usually it refers to the transition to a transient
state of different symmetry after intense photoexcitation
with a femtosecond laser pulse. A prime example of such a
transition is the destruction of electronic order in a charge
density wave (CDW) compound, and ultrafast transitions
from numerous broken symmetry states in correlated
electron systems have been observed [1–5].
ACDWsystempresents auniquemodel systemsinceonly

two coupled subsystems with long-range order exist—
electronic order and the lattice—and both are accessible
with modern time-resolved techniques. The dynamics and
the melting of the electronic order in CDW systems have
been studied in great detail [4,6,7], but mostly with methods
that are only indirectly sensitive to the structure of the
solid. Optical pump-probe spectroscopy can in principle
look at structural symmetry changes by investigating the
disappearance of coherent oscillations from zone-folded
modes [4,5]. These structural contributions to the optical
properties are, however, often difficult to distinguish from
purely electronic contributions, particularly when the
relevant vibrational modes become strongly damped.
A direct view of the dynamics of the lattice can be

obtained by methods directly sensitive to the positions of
lattice atoms in solids. Time resolved x-ray diffraction [2,8]
and electron diffraction methods [3,9,10] are emerging, but
the reported measurements so far lack either sufficient time
resolution or sensitivity to track possible coherent structural

dynamics associated with the ultrafast melting of electronic
order. This information is crucial to fully understand an
ultrafast symmetry breaking transition, and to answer
questions concerning the time scale of the symmetry
change and the nature of the nonequilibrium state that
exists on a picosecond time scale after excitation.
In this Letter we show that by following the coherent

structural dynamics through an ultrafast photoinduced
CDW-to-metal transition with sufficient time resolution
over a wide range of relevant excitation fluences, we can
see the time scale of the structural symmetry change and the
dynamics of the periodic lattice distortion (PLD) in the
transient high symmetry state.
As shown by Peierls, a one-dimensional conductor is

fundamentally unstable with respect to the formation of a
broken symmetry ground state [11], the CDW ground state.
Below the metal-to-CDW transition temperature Tc, the
equilibrium electronic density and lattice positions are
modulated with a wave vector qCDW that is related to
the Fermi surface nesting condition of the system. In
thermodynamic equilibrium, a multicomponent complex
order parameter combines electronic and structural order
and fully characterizes the broken symmetry state [12].
A periodic lattice distortion is associated with CDW
formation. New collective excitations of the complex order
parameter arise, leading to Raman active phonon modes
that show softening toward Tc.
A prototypical Peierls transition is realized in the quasi-

one-dimensional conductor K0.3MoO3 (often termed Blue
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Bronze) [13–15]. K0.3MoO3 is widely regarded as a text-
book example of Fermi surface nesting driven CDW
formation, displaying a clear correlation between qCDW
and the Fermi nesting vector [16,17] as well as a Kohn
anomaly above Tc [18]. Upon cooling below Tc ¼ 183 K,
K0.3MoO3 undergoes a second order phase transition
and develops an incommensurate CDW [19–21] with wave
vector qCDW ¼ ð1 qb 0.5Þ. The modulation along the b�-
axis varies with temperature [22]; at 100 K qb ¼ 0.748ð1Þ
[23]. The lowest frequency Raman active collective
excitation at νAM ¼ 1.7 THz [18] is commonly referred
to as the amplitude mode (AM). At room temperature,
K0.3MoO3 has space group C2=m and can be cleaved
along the ð201̄Þ surface, in which linear chains of corner-
and edge-sharing MoO6 octahedra are located [see
Fig. 1(a)]. The chains are separated by layers of K-atoms.
Static grazing incidence x-ray diffraction data show that
the CDW modulation vector is the same in the surface
layers as in the bulk [24].
The time-resolved x-ray diffraction measurements were

carried out at a hard x-ray synchroton slicing source [25] in a
grazing incidence geometry [see Fig. 1(b)]. The cleaved
K0.3MoO3 single crystal samplewas cooled well below Tc to
T0 ¼ 95 K using a cryogenic nitrogen blower. The crystal

was excited by 1.55 eV (800 nm) laser pulses with a duration
(full width at half maximum) of 100 fs, hitting the sample at a
grazing angle of β ¼ 10° withp polarization. The penetration
depth of the excitation pulses is around δL ¼ 80 nm [26].
The pulse length of the sliced x-ray probe pulses is estimated
to be tprobe ¼ 80 fs. The x-ray energy was set to 7 keV,
resulting in a penetration depth of around δX ¼ 100 nm for
a grazing angle α ≈ 0.4°. The x-ray beam was focused to
10 μm vertically and 300 μm horizontally, ensuring a
homogeneous lateral excitation of the probed volume.
The intensity of the ð1 ð4 − qbÞ 0.5Þ superlattice (SL)

reflection was measured with an avalanche photodiode for
varying time delays between the pump and the x-ray probe.
Due to the low scattering efficiency of the SL reflection,
count rates of only 2 photons=s at the detector could be
achieved, thus requiring integration times of up to 12 hours
for a single trace with sufficient signal-to-noise ratio. To
prevent x-ray induced sample degradation, the K0.3MoO3

sample was never exposed to the full power of the unsliced
synchrotron radiation.
For excitation fluences below the melting threshold of

the CDW condensate, we can directly follow the structural
dynamics associated with the collective AM in a system
exhibiting a Peierls transition. Figure 2 shows the time
evolution of the measured SL diffraction intensity IðtÞ,
normalized to the equilibrium diffraction intensity
I0 ¼ Iðt < 0Þ. The small diffraction efficiency of the SL
reflection allows us to apply the kinematic approximation
I ∝ jFSLj2, where FSL is the structure factor for the
measured SL reflection. Since the amplitude of the equi-
librium PLD is small [23], to leading order we estimate FSL

as FSLðtÞ ∝ XðtÞ, where XðtÞ describes the atomic motion
along the structural coordinate of the Peierls distortion.
Since the AM corresponds to the atomic movement
XðtÞ along the distortion coordinate, we model it in the

(a)

(b)

FIG. 1 (color online). (a) Linear chains of high conductivity
composed of MoO6 octahedra, separated by layers of K-atoms.
The plane corresponds to the ð201̄Þ cleavage plane. (b) Experi-
mental setup; parameters as described in the text. The incidence
plane of x-ray probe and 800 nm pump beam is vertical. The
detector is positioned to measure the intensity of a SL reflection,
providing a direct view of the structural symmetry of the system.

FIG. 2 (color online). Time evolution of the normalized peak
diffraction intensity of the ð1 ð4 − qbÞ 0.5Þ reflection for a pump
fluence F ¼ 0.3 mJ=cm2, well below the melting threshold of the
CDW condensate. The error bars correspond to photon counting
statistics. The solid line is a fit to the data using a displacive
excitation model [see Eq. (1)].
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displacive limit of a stimulated Raman scattering process
[27,28]. The displacive excitation model yields [29]

xðtÞ ¼ Adispð cosð2πνAMtÞe−t=τAM − e−t=τdispÞ þ 1; ð1Þ
where the structural coordinate xðtÞ ¼ XðtÞ=XT is normal-
ized to the equilibrium distortion XT . The first term in
Eq. (1) corresponds to the damped coherent oscillation of
the AM with frequency νAM and damping time τAM, while
the second term describes the relaxation of the transient
quasiequilibrium position after excitation with a time
constant τdisp. In Fig. 2 we show a fit of the normalized
diffraction intensity IðtÞ=I0 ¼ jxðtÞj2 according to the
model to the measured diffraction intensity. For an exci-
tation fluence [30] F ¼ 0.3 mJ=cm2, the values obtained
from the fit are νAM¼ 1.62�0.1 THz, τAM¼ 0.6�0.15 ps
and τdisp ¼ 2.3� 0.4 ps. The values for νAM and τAM are
in close agreement with results obtained from optical
measurements at 100 K [6].
In Fig. 3(a) we present the time evolution of the SL peak

diffraction intensity for a range of excitation fluences,
providing a complete picture of the coherent lattice
dynamics through the CDW-to-metal transition. The ampli-
tude of the coherent oscillation associated with the AM first
increases with increasing fluence, but at a fluence F ¼
1 mJ=cm2 no clear signature of the AM can be observed.
The relaxation time scale of the SL peak intensity increases
to τdisp ≈ 10 ps and the measured time scale of the initial
drop of SL diffraction intensity reduces to τdrop ≈ 100 fs,
the experimental time resolution. The SL diffraction
intensity right after the initial drop for F ¼ 1 mJ=cm2

reduces to approximately 0.5I0 and remains at this value
for higher excitation fluences. Similarly, the drop in SL
diffraction intensity at a time delay t ¼ 3 ps remains at
approximately 0.4I0 and does not recover within the
measured time window for fluences above F¼ 1mJ=cm2.
We attribute the background level to contributions from
unexcited volumes of the sample resulting from surface
steps of the cleaved crystal [31]. The fluences for which the
saturation background level is reached agree well with the
fluences for which in optical pump-probe spectroscopy
coherent oscillations associated with zone-folded modes
were observed to disappear [4].
For fluences well above this threshold, we observe a

transient recovery of the SL intensity, as demonstrated
by the data recorded at F¼2.1mJ=cm2 and F¼3.7mJ=cm2.
After the initial suppression, the SL diffraction intensity
recovers and peaks at t ¼ 350 fs. Note that when taking into
account the finite time resolution of the experiment, the
recovered SL intensity at this time corresponds to nearly 80
% of the equilibrium SL diffraction intensity.
To describe the coherent dynamics of the PLD in the

transient regime after photoexcitation (t > 0), we employ
a simple phenomenological model. Assuming that the
CDW in K0.3MoO3 is driven by Fermi surface nesting,
we introduce a fluence dependent double-well potential
[32,33],

VðxÞ ¼ 1

2

�
η exp

�
−

t
τdisp

�
− 1

�
x2 þ 1

4
x4: ð2Þ

Here, η exp ð−t=τdispÞ describes the transient change in the
potential energy caused by laser excitation. The parameter
η ∝ F is related to the suppression of electronic order
just after excitation, while τdisp specifies the time scale of
relaxation back to the initial potential. In an unperturbed
system η ¼ 0 and the potential is partitioned by a Peierls
barrier. The system resides in one of the minimum
positions, corresponding to the equilibrium displacement
along the structural coordinate of the Peierls distortion [see
Fig. 3(b)]. The coherent structural motion along this
coordinate after photoexcitation can then be determined
by the following equation of motion:

FIG. 3 (color online). (a) Time evolution of the normalized SL
diffraction peak intensity for increasing fluence F. The horizontal
dashed line in the higher fluence scan represents the saturation
background. Solid lines are fits according to the model as
described in the text. (b) Photoinduced changes of the double-
well potential as assumed in our model simulation. The grey
potential corresponds to the unperturbed CDW state (where the
excitation parameter η ¼ 0), the green circle represents the
displacement along the structural coordinate of the Peierls
distortion. The transient quasiequilibrium position after excita-
tion is labeled Xeq. (c) Schematic of the inhomogeneously excited
crystal in the case of a high fluence excitation that leads to η0 > 1,
the z axis corresponds to the axis perpendicular to the surface
plane. (d) Simulated diffraction signal of a thin layer for certain
values of η (at t ¼ 0), where δL corresponds to the laser
penetration depth.
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−
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τdisp
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xþ x3

þ 2γðtÞ
ω2
DW

∂
∂t x ¼ 0; ð3Þ

where ωDW corresponds to the angular frequency of the
motion in the double-well (DW) potential. In the equation
of motion, we introduce a phenomenological damping
parameter, which we will discuss later. In the low pertur-
bation regime (η ≈ 0) corresponding to small amplitudes
of the structural motion and a small reduction of the
barrier height, the results of the harmonic displacive model
[Eq. (1)] are reproduced. For fluences above the melting
threshold of the CDW condensate, η ≥ 1 and the CDW
condensate is depleted, causing a nearly instantaneous
collapse of the Peierls barrier. Subsequently, the structure
evolves in a high-symmetry potential and overshoots into
the opposite side of the potential that was before partitioned
by the barrier, corresponding to a transient PLD with the
opposite phase.
To finally compare the experimental data to the model

simulations, we must take into account the inhomogeneous
excitation profile of the single crystal sample. The mea-
sured signal contains contributions from layers with differ-
ent excitation levels. We calculate the integrated intensity
IðtÞmeasured by the detector by incoherently summing the
contributions from a series of layers at various distances z
from the surface, each with a thickness of d ¼ 10 nm [34]:
IðtÞ ∝ P∞

j ΔjjFSL
j ðtÞj2. Here, FSL

j ðtÞ corresponds to the
structure factor of the jth layer [see Fig. 3(c)], and we
weight its contribution to the measured signal with Δj ¼
expð−2jd=δXÞ to account for x-ray absorption in the
crystal. To fit the data, we solve the equation of motion
[Eq. (3)] for each layer. The simulated signal resulting from
only one layer is depicted in Fig. 3(d) for selected values of
η at t ¼ 0. The only fluence dependent parameters needed
to fit the whole data set are η0, the value of η in the
uppermost surface layer for t ¼ 0, and the relaxation time
τdisp of the Peierls barrier averaged over all layers. The
frequency νDW ¼ ωDW=2π in the equation of motion for
the double-well potential is determined by fits to the low
fluence traces to be νDW ¼ 1.53 THz, in close agreement
with the high temperature bare phonon frequency of the
phonon branch displaying the Kohn anomaly [18].
In the transient regime after intense photoexcitation, the

damping parameter γðtÞ can have several possible physical
origins. Electron-phonon coupling and lattice anharmonic-
ities should both contribute to the damping of the motion
along the distortion coordinate, but the system is far away
from equilibrium and possible microscopic scattering
channels are not easily elucidated. With a constant
damping parameter, we cannot account for the near full
transient recovery of the PLD, followed by a complete
suppression after only one cycle. We thus introduce a
phenomenological time-dependent damping term γðtÞ ¼
γasymð1 − e−t=τγ Þ2, where τγ ¼ 300 fs, close to the fast

relaxation time scale measured with optical pump-probe
spectroscopy [4]. We chose an expression as simple as
possible, while still capturing the main features of the data.
Asanasymptoticvalueweuse γasym ¼ 2 ps−1,which is close
to the damping constant measured via neutron diffraction
near the thermalphase transition [18].The time scale τγ could
be related to electronic relaxation processes after photo-
excitation [6,33]. However, the unusual time dependent
damping could also be caused by anharmonic coupling
in the transient regime, where eigenmodes are not well
defined and strong time- dependent coupling effects might
arise [7]. To further investigate the scattering mechanisms
after intense photoexcitation and to specify the damping
mechanism in the transient regime, emerging time-resolved
diffuse scattering techniques will be useful [35].
The model simulations agree well with the measured data

[see Fig. 3(a)], reproducing all critical details of the evolution
through all fluence regimes: (i) excitation of collective AM
for low fluences → (ii) no clear signature of AM and
increased suppression of the PLD → (iii) transient recovery
of PLD, followed by a complete suppression of the PLD. In
the intermediate fluence regime (F ¼ 1 mJ=cm2), the agree-
ment between the simulation and the data is not as good.
This may indicate that our estimate of the excitation depth
profile as a simple exponential is oversimplified, leading
to an error in the relative magnitude of contributions from
highly excited regions near the surface and less excited
regions further into the bulk of the crystal. We have not
considered in the model any possible nonlinear components
to the initial absorption process or subsequent effects from
hot electron diffusion, both of which could modify the shape
of the excitation profile. For excitation levels far above or far
below the melting threshold, the data and simulation are both
less sensitive to the detailed excitation profile since the
dynamics of all excited layers are similar.
It is important to note that within the framework of this

model, we rely on the assumption that the complete
structural dynamics associated with the CDW-to-metal
transition can be described as a coherent motion along a
single degree of freedom, namely the motion along the
coordinate of the Peierls distortion. Domain growth and
the creation of an incoherent phonon population leading to
a change in the Debye-Waller factor do not need to be
included in the phenomenological description to capture all
important features of the data [32].
The agreement with the model indicates that during the

ultrafast melting of a CDW, the structural dynamics are
determined by the properties of the high-symmetry phase
and not by the lattice modes of the initial state. This has
wide implications for the understanding of materials with a
predominantly electronically driven PLD that is the result
of a coupling of the lattice to long-range electronic order.
Ultimately, it explains why the dynamics of structural
symmetry during a so-called nonthermal phase transition
can be fast, while time scales observed during an adiabatic
soft-mode phase transition diverge when approaching Tc.
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In summary, we observed the coherent lattice dynamics
associated with CDW formation in a Peierls system. The
prototypical nature of the quasi-one-dimensional conductor
K0.3MoO3 allows us to interpret the results as a structural
motion along one generalized coordinate in an excitation
dependent double-well potential, triggered by the collapse
of electronic order. To explain the nearly full transient
recovery of the PLD following the initial complete sup-
pression, we introduce a phenomenological time-dependent
damping factor. The physical origin of this time-dependent
damping is unclear, but may indicate strongly time-
dependent electron-phonon or phonon-phonon coupling.
It will be very illustrative to test if similar overshoot
dynamics can be observed in systems where the full
mechanism of the transition is not as clear-cut [36], e.g.,
systems displaying a two-dimensional CDW [10,37].
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acknowledge financial support by the NCCR Molecular
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