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We generalize the two-temperature model [Sanders and Walton, Phys. Rev. B 15, 1489 (1977)] for
coupled phonon-magnon diffusion to include the effect of the concurrent magnetization flow, with a
particular emphasis on the thermal consequence of the magnon flow driven by a nonuniform magnetic
field. Working within the framework of the Boltzmann transport equation, we derive the constitutive
equations for coupled phonon-magnon transport driven by gradients of both temperature and external
magnetic fields, and the corresponding conservation laws. Our equations reduce to the original Sanders-
Walton two-temperature model under a uniform external field, but predict a new magnon cooling effect
driven by a nonuniform magnetic field in a homogeneous single-domain ferromagnet. We estimate the
magnitude of the cooling effect in an yttrium iron garnet, and show it is within current experimental reach.
With properly optimized materials, the predicted cooling effect can potentially supplement the conven-
tional magnetocaloric effect in cryogenic applications in the future.
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Spin caloritronics [1,2] is a nascent field of study that
looks into the interaction between heat and spin. In addition
to providing ways of thermally manipulating magnetization
and magnetic domain walls [3–5] as supplements to
conventional spintronics, it also holds the promise of novel
energy harvesting and cooling applications owing to the
recent discovery of the spin Seebeck effect (SSE) [6–10]
and its reciprocal spin Peltier effect (SPE) [11,12]. Despite
the existing debate on details, it has been widely recognized
that the aforementioned spin caloritronic effects are con-
sequences of the interactions between phonons, electrons
and spins [13–16]. From this perspective, spin caloritronics
is a natural extension of both thermoelectrics and spin-
tronics. Phonons are responsible for heat conduction in
most solids; in metallic and semiconducting materials,
electrons are carriers of charge, heat and spin; in magnetic
materials, magnons [17]—the collective excitations of
spins—also participate in transporting spin [18] and heat
[19]. Coupled to these carriers are thermodynamic forces
that drive their flows [20]: the gradients of temperature,
electrochemical potential, and nonequilibrium magneti-
zation [21]. For conditions close to equilibrium, it is
particularly convenient to treat the coupled transport
phenomena within the phenomenological framework of
irreversible thermodynamics [20], where the Onsager
reciprocity relation serves as the link between concurrent
flows. Routinely used in studying the coupled transport of
electrons and phonons [20–22], the method of irreversible
thermodynamics has also been utilized in analyzing the
coupled transport of heat and charge with spins [21,23–26].
In this Letter we limit our discussion to ferromagnetic

insulators without free conducting electrons. Further
steps to understanding the spin caloritronic effects require
microscopic models that provide quantitative information
of the transport processes, for example the kinetic

coefficients [20] that connect the driving forces to the
corresponding fluxes. For studying thermoelectrics, the
coupled transport processes are typically treated within
the framework of Boltzmann transport equation (BTE)
[22], which in the diffusion regime gives quantitative
kinetic coefficients, and is capable of delineating ballistic
transport [27] when solved with proper boundary condi-
tions. It is particularly a natural way to describe thermally
induced transport processes where coherent contributions
are not important. On the other hand, the spintronics
community often uses the Landau-Lifshitz-Gilbert (LLG)
[28] equation for the dynamics of magnetization.
Compared with BTE, LLG adopts a more “wavelike” point
of view, where the coherent dynamics is important and the
thermal relaxation acts as a damping factor. Indeed the long
wavelength magnons have been shown to exhibit macro-
scopic coherence lengths at room temperature [29], and
LLG is necessary to account for their behaviors. For the
thermal transport, however, magnons with a wide range of
wavelengths and coherent lengths will be excited, and LLG
seems no longer a particularly convenient description. A
recent work by Hoffman et al. [30] applied a “semi-
phenomenological” stochastic LLG equation to modeling
the longitudinal SSE, where the temperature effect was
incorporated via a thermally fluctuating Langevin field.
Since a linear phonon temperature distribution was pre-
sumed in their work, it did not fully solve the coupled
phonon-magnon transport problem. An alternative
approach to this problem adopts a more “particlelike”
picture. The pioneering work by Sanders and Walton
[31] treated the coupled phonon-magnon thermal diffusion
process with a two-temperature model, where phonons and
magnons were modeled as two gases of bosons, each
locally in thermal equilibrium with different temperatures,
and the local energy exchange rate between them is
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proportional to the temperature difference. This model was
later used to explain the spin Seebeck effect [13], and was
recently extended to take into account the boundary heat
and spin transfer [32]. It also served as a modeling tool for
interpreting dynamic measurements of the thermal con-
ductivity of spin ladder compounds [33,34] and the static
direct measurement of the magnon temperature [35], and
has been applied to other carrier systems such as electron-
phonon [36] and acoustic-phonon-optical-phonon [37].
In their original formulation, Sanders and Walton did not

consider the associated magnetization flow with the mag-
non heat flow. On the other hand, Meier and Loss [38]
showed that the magnon flow could also be generated by a
nonuniform external magnetic field, but they did not look
into the thermal aspect of this transport process. More
studies also discussed the similarity between field-driven
magnon transport and electron transport [39–43]. In a
recent work by Kosevich and Gann [44], both quantum
and semiclassical dynamics of a field-driven magnon flow
was thoroughly studied. In the current Letter we attempt to
combine the two paths, one from the thermal perspective
and the other from the magnetic perspective, and give a
unified description of the coupled phonon-magnon diffu-
sive transport of both heat and magnetization, which is also
applicable when the external magnetic field is nonuniform,
with a special focus on the thermal effect associated with
the field-driven magnon flow.
Magnons are (in most cases [34]) bosonic excitations,

and in equilibrium obey the Bose-Einstein distribution,

f0ðr;kÞ ¼
1

exp½ℏωðkÞþgμBBðrÞ
kBTmðrÞ � − 1

; ð1Þ

where ℏωðkÞ is themagnon energy [17,28] without external
magnetic field, g is the Landé g factor, μB is the Bohr
magneton (−gμB combined represents the amount of mag-
netic moment carried by a single magnon [38]), Tm is the
magnon temperature and B is the external magnetic field.
Here we neglect the magnetic dipolar interaction and mag-
netic anisotropy for simplicity. Althoughmagnons can reach
aquasiequilibriumstatewitha finitechemicalpotentialunder
parametric pumping [45], here we treat magnons with a
vanishingchemical potential, assuming the local equilibrium
is reached. Next we write down the steady-state Boltzmann
transport equation with the relaxation time approximation,

− f − f0
τm

¼ v ·∇rf0; ð2Þ

where fðr;kÞ is the nonequilibrium distribution function of
magnons, vðkÞ is the group velocity of magnons, τm ¼
ðð1=τm−mÞ þ ð1=τm−p;elaÞ þ ð1=τm−impÞÞ−1 is a lumped
relaxation time of magnons including effects of magnon-
magnon scattering [46], elastic magnon-phonon scattering
[47] and elastic magnon-impurity scattering [48]. The
inelastic magnon-phonon scattering is responsible for the
local energy exchange between magnons and phonons [47],

and in general cannot be written in a relaxation-time form
[22]. Thus we follow Sanders and Walton [31] here and
consider the energy exchange process separately in the
conservation laws later. We emphasize the validity of this
separation requires that phonon-magnon interactions be
much weaker than magnon-magnon interactions.
After obtaining the nonequilibrium distribution function

fðr;kÞ, we can calculate the local magnetization and heat
flows carried by magnons. The magnetization flow is
Jm ¼ −gμB R ðd3k=ð2πÞ3Þfv, where the minus sign
accounts for the fact that the excitation of magnons reduces
the total magnetization [49], MðrÞ ¼ Ms − gμBnm, where
Ms is the saturation magnetization, and nm is the number
density of magnons. To calculate the magnon heat flow, we
start with the thermodynamic relation of a magnet [20],
dE ¼ dQþ BdM ¼ dQ − BgμBdnm, where E is the total
energy of the magnet and the interaction energy (BM)
between the magnet and the magnetic field, and thus field-
independent [50], corresponding to ℏωðkÞ microscopically
(in contrast ℏωðkÞ þ gμBB corresponds to the field-
dependent “spectroscopic energy” [50]). Differentiating
the above relation with respect to time, we get the magnon
heat flux Jqm¼Je−BJm¼R ðd3k=ð2πÞ3ÞðℏωþgμBBÞfv,
where Jqm is the magnon heat flux, Je is the magnon energy
flux. The term BJm describes the transport of the magnetic
interaction energy associated with the magnetization flow,
analogous to φJc in the case of electrons, where φ is the
electro-static potential and Jc is the electrical charge flux.
Combining the above expression with Eqs. (1) and (2),
we arrive at the constitutive equations for the magnon
transport,

−Jm ¼ L11∇Bþ L12ð−∇TmÞ; ð3Þ
Jqm ¼ L12Tm∇Bþ L22ð−∇TmÞ; ð4Þ

with the kinetic coefficients given by (assuming an
isotropic magnon dispersion),

L11 ¼ − ðgμBÞ2
3

Z
ω

τmv2
∂f0

∂ðℏωÞDðωÞdω; ð5Þ

L12 ¼ − gμB
3Tm

Z
ω

ðℏωþ gμBBÞτmv2
∂f0

∂ðℏωÞDðωÞdω; ð6Þ

L22 ¼ − 1

3Tm

Z
ω

ðℏωþ gμBBÞ2τmv2
∂f0

∂ðℏωÞDðωÞdω; ð7Þ

where DðωÞ is the magnon density of states. We can
interpret L11 as the isothermal magnetoconductivity σm and
L22 as the uniform-field magnon thermal conductivity κm,
and define L12 as a magnetothermal coupling coefficient
ςm. Note that the Onsager reciprocity relation manifests
itself explicitly in Eqs. (3) and (4). It can be shown using
Cauchy-Schwartz inequality that L11L22 ≥ TmL12

2 (in the
case of electron transport, this inequality implies a positive
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zero-current thermal conductivity [22]), which guarantees
the net entropy generation in this system is non-negative
[51]. Eqs. (3)–(7) are reminiscent of electron transport, and
the external field B seems to play a similar role as the
electrochemical potential of electrons. We need to point out
here, however, a critical difference between electrons and
magnons. The number of electrons is conserved; thus, the
electrochemical potential includes the contribution of a
finite chemical potential that can be “self-adjusted” during
the transport process, whereas the number of magnons is
not conserved, and the B field does not contain a similar
contribution as the chemical potential of electrons (given
the magnetic dipolar interaction is negligible).
With the constitutive equations (3) and (4), we still need

conservation laws to complete the formulation. We first
look at the phonon system. At steady state, the phonon
energy can either be transported by the phonon heat flux or
transferred to the magnon system. Thus in the spirit of
Sanders and Walton’s original work, the phonon energy
conservation states

∇ · Jqp ¼ CmCp

Cm þ Cp

Tm − Tp

τmp
≡ gmpðTm − TpÞ; ð8Þ

where Jqp is the phonon heat flux, Tp is the phonon
temperature, Cm and Cp are the volumetric specific heat of
magnons and phonons, τmp is a phenomenological time
scale characterizing the inelastic interaction between
phonons and magnons, and we define gmp as a lumped
coefficient of phonon-magnon energy exchange. It is worth
mentioning that Eq. (8) is the result of inelastic phonon-
magnon scattering and in principle can be derived from a
full version of BTE, similar as in the case of electron-
phonon coupling [22]. Another conservation law has to do
with the energy input from an external power source. The
impression that a magnon flow can be generated by a
nonuniform static magnetic field can be misleading because
it violates the second law of thermodynamics: no energy is
put into the system, while the magnon flow can potentially
output work. In reality, when the magnetization of the
magnet changes, an electromotive force (EMF) is induced
in the electromagnet (e.g., a solenoid). To maintain the
magnetic field, the current running through the electro-
magnet has to overcome this EMF and thus do work. It can
be shown [50] that the work done by the current in this
process is precisely equal to BdM. Hence the local creation
and annihilation of magnons enables the energy exchange
between the system (including the ferromagnet itself and its
interaction with the field) and the external power supply. A
local version of the above statement can be translated to
∇ · ðJqm þ BJm þ JqpÞ ¼ B∇ · Jm, or more explicitly,

∇ · Jqm þ∇B · Jm ¼ gmpðTp − TmÞ: ð9Þ

Now combining Eqs. (8), (9) with (3) and (4), and
the normal Fourier law for phonon heat conduction,

Jqp ¼ −κp∇Tp (κp is the phonon thermal conductivity),
the governing equations for the temperature distributions of
magnons and phonons read (considering one-dimensional
situations),

−κp ∂
2Tp

∂x2 ¼ gmpðTm − TpÞ; ð10Þ

−κm ∂2Tm

∂x2 þ
�
2ςm

∂B
∂x

� ∂Tm

∂x þ ςm
∂2B
∂x2 Tm − σm

�∂B
∂x

�
2

¼ gmpðTp − TmÞ: ð11Þ

Here we assume the applied temperature and magnetic
field gradients are small and thus the transport coefficients
are averaged values that do not explicitly depend on Tm or
B. Equations (10) and (11) reduce to the original Sanders-
Walton model when the external magnetic field is uniform,
even though in this case the magnetization flow is
present (Jm ¼ −ςm∇Tm).
More interesting phenomena emerge when nonuniform

external magnetic field is applied. We expect a nonuniform
external field will drive magnon flow, which is associated
with a magnon heat flow, and cause temperature redis-
tribution of both magnons and phonons due to the phonon-
magnon coupling. Without a concise analytic solution with
the coupling terms, we turn to numerical solutions for
clarity, before which we first estimate the kinetic coeffi-
cients based on information in literature on yttrium iron
garnet (YIG). Since the magnetic energy scale is pretty
small (gμB ≈ 1.3 K=T, for g ¼ 2 in YIG), we expect the
predicted effect to be more pronounced at low temper-
atures. Thus we use the low temperature expansion of the
magnon dispersion ℏωðkÞ ¼ Dk2a2, where D ≈ 1.8 meV
[52], and the lattice constant a ¼ 12.3 Å for YIG [53]. For
a similar reason, we neglect the field dependence of the
kinetic coefficients in the following discussion. Further
assuming a constant relaxation time τm, we obtain the ratio
ðσm=ςmÞ ¼ ðgμB=kBÞðξð1.5Þ=ξð2.5ÞÞ ¼ 1.304 K=T with
ξðtÞ ¼ Rþ∞

0 ðxtex=ðex − 1Þ2Þdx, which is analogous to
the inverse of the Seebeck coefficient in the electron case.
The value of τm is highly controversial [13], and here we
adopt a value of τm ∼ 1 ns, which leads to the calculated
uniform-field magnon thermal conductivity κm ≈
8 W=mTK at 20 K with zero field that is at least of the
reasonable order of magnitude compared with the experi-
ment [54]. With the same relaxation time, we obtain
σm ≈ 0.25 W=mT2, and ςm ≈ 0.19 W=mTK. For phonons,
we choose κp ≈ 50 W=mK [54]. At 20 K, the specific heat
of magnons and phonons are on the same order
(∼104 J=m3K) [55]. Different claims on the value of τmp
exists, ranging from below a few nanoseconds [32,56] to
longer than a few hundred nanoseconds [13,57–59] at
300 K. At lower temperature, this relaxation time will be
longer, and we tentatively choose τmp ≈ 100 ns due to the
large uncertainty of available data.
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Provided the above parameters, we study numerically an
experimentally realizable case: a strip of YIG (100 um
long) connected to a thermal reservoir at 20 K with one end,
and the other end isolated. If part of the YIG strip is covered
by a magnetic shielding material with high magnetic
permeability, a steplike magnetic field can be realized
within YIG just by applying a uniform field. We model this
steplike magnetic field as a smeared-out Fermi-Dirac
function as shown in Fig. 1(a) (the length scale of the
smearing is chosen to be much larger than the mean free
paths of magnons to avoid the complication of ballistic
transport, which in principle can still be fully captured by
the BTE), and calculate the phonon temperature at the
isolated end. In this case we apply adiabatic boundary
conditions for magnons at both ends (Je ¼ Jqmþ
BJm ¼ 0). A phonon-temperature drop of ∼56 mK is
predicted under a step field varying from 0.5 to 1.5 T,
with the temperature distribution of both phonons and
magnons shown in Fig. 1(b). This temperature drop can be
further amplified by increasing the field gradient as
illustrated in Fig. 1(c). We would like to emphasize that
the estimation here is very rough due to the lack of
information, and is only intended to demonstrate a probable
order of magnitude of this effect. The calculation above
indicates that this magnon cooling effect may be detected
under currently available experimental resolution. In
passing we note that the predicted effect differs from the
conventional magnetocaloric effect [60], such as adiabatic
demagnetization, in that the magnetocaloric effect utilizes
thermodynamic properties of the magnet (i.e., the

field-dependent specific heat) in equilibrium, and a uniform
field is often applied.
We provide another example where the magnon cooling

effect is set up in close analogy to a thermoelectric Peltier
cooling unit and calculate the coefficient of performance
(COP) and effective zT. In this example the YIG strip is
sandwiched between two thermal reservoirs with temper-
atures Th > Tc, when a step field [as in Fig. 1(a)] is
applied. The temperature profiles when Th ¼ 20 K, Th −
Tc ¼ 30 mK and ðB0; B1Þ ¼ ð0.5 T; 1.5 TÞ are plotted in
Fig. 2(a), and it is clearly shown that heat is moved from the
cold source to the hot source. The COP can be calculated
via COP≡ ðQc=WÞ ¼ ðJqp;cold= − R

L
0 B∇ · JmdxÞ, and is

plotted in Figs. 2(b) and 2(c) against varying temperature
and field difference. At the fixed temperature difference of
30 mK [Fig. 2(b)], the optimal COP is around 2, corre-
sponding to an equivalent thermoelectric module with
ZT ¼ 0.01. From Fig. 2(c), the maximal attainable
temperature difference is ∼60 mK when ðB0; B1Þ ¼
ð0.5 T; 1.5 TÞ, where the COP drops to zero.
In summary, we have developed a semiclassical transport

theory for coupled phonon-magnon diffusion. The merit of
this work lies in the fact that we apply the techniques
widely used in the field of thermoelectrics to the study of
magnetization transport, utilize the analogy between field-
driven electron and magnon transport, and combine the
thermal effect with the field-driven magnon transport in a
natural way. Our theory takes into account that magnon
flow can be driven by nonuniform magnetic field, and
predicts that the heat carried by magnons associated with
their flow can result in a cooling effect. In real materials,
nonideal effects such as magnetic dipolar interactions and
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FIG. 1 (color online). (a) The steplike magnetic field, smeared
out as a Fermi-Dirac function. B0 is fixed to be 0.5 T in the
following calculation. (b) The temperature distribution of pho-
nons and magnons when B1 ¼ 1.5 T. One end of the sample
(x ¼ 0) is thermally connected to a reservoir at 20 K, and the
other end is isolated. (c) The dependence of the phonon temper-
ature difference between the two ends on the difference of the
magnetic field when B0 is set to 0.5 T.
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the magnetic anisotropy need to be considered as a
refinement to this work. We have estimated the magnitude
of the magnon cooling effect in YIG, to show it can be
verified by experiments. For practical uses, however, it is
necessary to search for more suitable materials (preferably
with lower thermal conductivities, and strong phonon-
magnon interaction), and optimize the material properties
via engineering efforts. We envision this new effect could
supplement the conventional magnetocaloric effect in
cryogenic applications in future.
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