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Large-scale simulations of two-dimensional bidisperse granular fluids allow us to determine spatial
correlations of slow particles via the four-point structure factor S4ðq; tÞ. Both cases, elastic (ε ¼ 1) and
inelastic (ε < 1) collisions, are studied. As the fluid approaches structural arrest, i.e., for packing fractions
in the range 0.6 ≤ ϕ ≤ 0.805, scaling is shown to hold: S4ðq; tÞ=χ4ðtÞ ¼ sðqξðtÞÞ. Both the dynamic
susceptibility χ4ðταÞ and the dynamic correlation length ξðταÞ evaluated at the α relaxation time τα can be
fitted to a power law divergence at a critical packing fraction. The measured ξðταÞ widely exceeds the
largest one previously observed for three-dimensional (3d) hard sphere fluids. The number of particles in a
slow cluster and the correlation length are related by a robust power law, χ4ðταÞ ≈ ξd−pðταÞ, with an
exponent d − p ≈ 1.6. This scaling is remarkably independent of ε, even though the strength of the
dynamical heterogeneity at constant volume fraction depends strongly on ε.
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Viscous liquids, colloidal suspensions, and granular
fluids are all capable of undergoing dynamical arrest,
either by reducing the temperature in the case of viscous
liquids or by increasing the density in the cases of colloidal
suspensions and of granular systems [1–4]. As the dynami-
cal arrest is approached, not only does the dynamics
become dramatically slower, but it becomes increasingly
heterogeneous [4–21]. One of the most common ways to
characterize the heterogeneity in the dynamics is to probe
its fluctuations [4]. Since probing the dynamics requires
observing the system at two times, probing the spatial
fluctuations in the dynamics naturally leads to defining
quantities that correlate the changes in the state of the
system between two times, at two spatial points, i.e., four-
point functions. Those quantities include the dynamic
susceptibility χ4ðtÞ, which gives a spatially integrated
measurement of the total fluctuations, and the four-point
structure factor S4ðq; tÞ, which is the Fourier transform of
the spatial correlation function describing the local fluctu-
ations in the dynamics [4,12,15]. From the small wave
vector behavior of S4ðq; tÞ, a correlation length ξðtÞ can be
extracted, and it has been found in simulations of viscous
liquids and dense colloidal suspensions that this correlation
length grows as dynamical arrest is approached
[4,12,15,16]. For granular matter, on the other hand, the
jamming transition has been analyzed extensively, but
studies on dynamic heterogeneity are few. Two experimen-
tal groups have investigated driven 2d granular beds in the
context of dynamic heterogeneity. These studies are
restricted to small systems of order a few thousand particles
[13,14,17–21]. χ4ðtÞ has been measured, but spatial corre-
lations have not been investigated systematically due to

small system size. Instead, compact regions of correlated
particles are usually assumed, χ4ðtÞ ∼ ξdðtÞ, thereby deter-
mining a correlation length ξðtÞ.
Here we determine ξ and χ4 independently from

S4ðq; tÞ—without further assumption. We show that there
is indeed a cooperative length scale that grows dramatically
as structural arrest is approached: Varying the density by
10% results in an increase in ξ by a factor ∼20. The number
of correlated particles is given by χ4ðtÞ, which increases
by a factor > 102 in the same range of densities. Both ξðtÞ
and χ4ðtÞ are well fitted by power law divergencies.
Remarkably, size and length scale are related by a robust
power law, χ4ðταÞ ≈ ξd−pðταÞ with an exponent
d − p ≈ 1.6, implying that the clusters of slow particles
are neither compact nor stringlike. For fixed packing
fraction the strength of the dynamical heterogeneity
changes dramatically with the degree of inelasticity; how-
ever, the scaling χ4ðταÞ ≈ ξd−pðταÞ and the exponent d − p
are universal. To obtain these results, and in particular a
correlation length as large as 72 particle radii, we rely on
large-scale simulations with typically 4 × ð105–106Þ par-
ticles. We find that in 2d the spatial fluctuations are much
stronger but the relaxation time grows much more slowly
with length scale than in 3d.
We consider a bidisperse system of hard disks in 2d, with

radii r2 and r1 such that r2 ≈ 1.43r1. The hard disks interact
via two-body inelastic collisions: The normal component of
the relative velocity of two colliding particles is multiplied
by a factor ε ≤ 1, the coefficient of restitution. In the
inelastic case ε < 1, energy ∝ ð1 − ε2Þ is dissipated in each
collision, and has to be supplied in order to reach a steady
state. Here, we kick the particles randomly, comparably to
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the bulk driving in the experiments presented in
Refs. [13,14]. The total injected power is chosen
∝ ð1 − ε2Þ, in order to achieve approximately the same
granular temperature TG (a measure of the rms velocity
fluctuations), for all ε. The system presented here is the
same as the one in Ref. [22], where additional simulation
details can be found.
In this work, we analyze simulations for ε ¼ 0.90 with

packing fractions 0.6 ≤ ϕ ≤ 0.805, and for ε ¼ 0.70;
0.80; 1.00 with packing fractions 0.72 ≤ ϕ ≤ 0.79. The
system contains Ntot ¼ 4 000 000 particles for 0.60 ≤ ϕ ≤
0.78 and Ntot ¼ 360 000 particles for 0.79 ≤ ϕ ≤ 0.805.
We measure lengths in units of the radius r1 of the small
disks and choose units of time such that TG ¼ 1. To analyze
the results, we divide the simulation box, which has total
area L2

tot, into sub-boxes of equal areas L2. The number of
particles Nr in each sub-box Br (centered at point r)
fluctuates over time and between different sub-boxes, but
its average N ¼ NtotðL=LtotÞ2 has been kept fixed for each
measurement. For all analyses, we select the time window
so that the system is in a steady state.
To probe the dynamics, we define the single-particle

overlap function wiðt2; t1Þ≡ θða − jriðt2Þ − riðt1ÞjÞ,
where θ is the Heaviside function, t1 and t2 are times such
that t2 ≥ t1, riðtÞ is the position of particle i at time t, and a
is the cutoff length. Intuitively, this observable distin-
guishes between “slow” particles, with wi ¼ 1, and “fast”
particles, with wi ¼ 0. For each sub-box Br and for a given
time interval between t0 and t0 þ t (t > 0), we also define
the sub-box overlap Qrðt; t0Þ ¼ 1=Nr

PNr
i¼1 wiðt0 þ t; t0Þ,

where the sum runs over the particles present in the box Br
at time t0.Qrðt; t0Þ can be interpreted as the fraction of slow
particles in sub-box Br in the time interval [t0, t0 þ t].
The average dynamics is characterized by the quantity

hQrðt; t0Þi, where h� � �i denotes an average over sub-boxes,
and � � � denotes an average over initial times t0 at fixed time
difference t. This quantity exhibits critical slowing down as
the packing fraction increases [23]. In particular, the α

relaxation time τα, defined by hQrðτα; t0Þi ¼ 1=e, is a
rapidly increasing function of ϕ [23]. Unless otherwise
indicated, the results shown below are for ε ¼ 0.9,
a ¼ 0.6r1, and t ¼ τα.

To quantify the heterogeneity of the dynamics, we use
the dynamic susceptibility

χ4ðtÞ ¼ N½hQ2
rðt; t0Þi − hQrðt; t0Þi2�; ð1Þ

which gives a direct measure of the strength of the
fluctuations in the overlap. As a function of time, χ4ðtÞ
has a maximum χP4 at time τ�. Both the maximum value χP4
and its position τ� are increasing functions of the packing
fraction ϕ (see Fig. 1, inset). Moreover, as shown in Fig. 1,
as a function of N, χP4 initially increases and then reaches
a plateau. Both the value of N at which the plateau starts
and the plateau value of χP4 are increasing functions of the
packing fraction ϕ, consistent with the presence of a
correlation length ξ that controls the finite size scaling
behavior of χP4 and that grows with increasing ϕ [24]. To
minimize finite size effects, in what follows all results are
reported for N ¼ 10 000 for ϕ ≤ 0.76 and N ¼ 40 000 for
ϕ > 0.76, which are within the plateau region for all
packing fractions considered.
Spatial correlations of the dynamical fluctuations are

encoded in the four-point structure factor

S4ðq; tÞ=N ¼ f½hWrðq; t; t0ÞWrð−q; t; t0Þi − hWrðq; t; t0ÞihWrð−q; t; t0Þi�g; ð2Þ

where Wrðq;t;t0Þ¼1=Nr
PNr

i¼1exp½iq ·riðt0Þ�wiðt0þ t;t0Þ,
and f� � �g denotes an average over wave vectors q of fixed
magnitude jqj ¼ q. The four-point structure factor and
the dynamic susceptibility are related by limq→0S4ðq; tÞ ¼
χ4ðtÞ [25].
As the packing fraction is increased to the point of

structural arrest, we expect long-range correlations of the
dynamic heterogeneities as well as scaling of S4ðq; tÞ.

In Fig. 2 we plot S4ðq; ταÞ=χ4ðταÞ as a function of
qξðταÞ, and find good collapse between data for different
ϕ. This shows that all dependence on ϕ can be absorbed
into a single length scale, the dynamic correlation length
ξðtÞ evaluated at τα. ξðtÞ can be extracted either by
collapsing the data in the scaling plot or by fitting
S4ðq; tÞ to the Ornstein-Zernicke (OZ) form, S4ðq; tÞ ¼
χ4ðtÞ=f1þ ½qξðtÞ�2g.
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FIG. 1 (color online). Peak value of the dynamic susceptibility
χP4 versus N for packing fractions 0.60 ≤ ϕ ≤ 0.805. Inset:
Dynamic susceptibility χ4ðtÞ for the same packing fractions as
in the main panel, for N ¼ 10 000.
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As can be seen in Fig. 2, the scaling function is close to
the OZ form for qξðταÞ≲ 1, but starts to differ significantly
from it for larger values of qξðταÞ. The values of ξðταÞ,
reported in Fig. 2, are obtained by fitting S4ðq; tÞ to the OZ
form in the range 0 < q < 0.2. Changing the fitting range
or adding a quartic term to the denominator in the fitting
function [16,28] does not significantly alter the results for
ξðταÞ [23].
In Fig. 3, we show that both χ4ðταÞ and ξðταÞ grow

rapidly with ϕ. In fact, both quantities and also the
relaxation time τα (not shown) are well fitted by divergent
power law forms χ4ðταÞ ∝ ðϕJ − ϕÞ−γχ , ξðταÞ ∝
ðϕJ − ϕÞ−γξ , and τα ∝ ðϕJ − ϕÞ−γτ , with a common loca-
tion ϕJ ≈ 0.82 for all three divergences but different
exponents γχ ≈ 2.5, γξ ≈ 1.6, and γτ ≈ 2.4 [23].

The above results imply a power law relation between
time scales and length scales: τα ∝ ½ξðταÞ�z, with a dynami-
cal exponent z ¼ γτ=γξ. In the inset of Fig. 3 we show τα as
a function of ξðταÞ. A power law fit with an exponent z ¼
γτ=γξ ≈ 1.5 is shown (full line), together with an alternative
description [16], i.e., τα ∝ exp½kξðταÞ� (dot-dashed line).
We do not observe the dramatic slowdown of growth of
the correlation volume for very long time scales seen in
structural glasses [29,30], although we cannot exclude it
happening at length scales that exceed the observed
correlation length of 35 particle diameters. This slowdown
in glasses is necessary to avoid unphysically large corre-
lation lengths, when extrapolated to experimental time
scales, but, in a granular fluid, the time scales are macro-
scopic and hence time and length scale in the simulation are
comparable to experiment.
We now examine how the dynamic susceptibility χ4ðταÞ

and the correlation length ξðταÞ depend on a. For a within
the range 0.2r1 ≤ a ≤ 4.0r1, both quantities display the
same behavior [31]. They grow monotonically with a, and
three regimes can be identified: extremely fast growth for
r=a1 ≲ 1, much slower growth for r=a1 ≳ 1, and a cross-
over in between. Figure 4 shows this for the case of ξðταÞ.
We also find that for fixed a, the relation between the two
quantities is well fitted by a power law, χ4ðταÞ ∝ ξd−pðταÞ,
with an exponent d − p ≈ 1.6, which is approximately
constant as a function of a. In the inset of Fig. 4 we show
this relation for a=r1 ¼ 0.6; 1.4; 3.0, i.e., for one value of a
in each of the regimes described above.
The exponent d − p gives information about the corre-

lated slow regions. In the most common interpretation,
d − p is the fractal dimension df of those regions. The
value df ≈ 1.6 differs from the expected values for compact
domains (df ¼ 2) and for stringlike domains (df ¼ 1). It
has been suggested that alternatively the correlated regions
could be compact, but their sizes could have a wide
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FIG. 2 (color online). Scaling plot of the four-point structure
factor S4ðq; ταÞ for different packing fractions, with
Ornstein-Zernicke fit (solid line). The correlation lengths ξ are
shown in the key.
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distribution [4,32]. However, this is not compatible with the
OZ form of S4ðq; tÞ, which implies a fast decay of G4ðr; tÞ
for large distances r. We have studied a wide range of
values of the cutoff a, which goes from being barely larger
than the typical displacement associated with vibrations of
caged particles to being larger than the displacement
required to reach the position of second neighbors to the
original location of the particle. Therefore, it is remarkable
that the exponent d − p is essentially constant over this
whole range of values of a.
We now turn to the analysis of the effects of dissipation

by comparing results for different values of the coefficient
of restitution ε. In Fig. 5 we show the dynamic suscep-
tibility χ4ðtÞ for ϕ ¼ 0.76 and ε ¼ 0.70, 0.80, 0.90, and
1.00 (elastic). As ε grows, the height of the peak of χ4ðtÞ
increases and the peak shifts to longer times. In the inset we
show that ξðταÞ also grows as a function of ε and that this
growth is stronger for higher packing fractions. Both results
are compatible with an ε-dependent critical density ϕJðεÞ as
predicted in Ref. [33]. Such a shift in the critical density

drops out if we plot the relation between χ4ðταÞ and ξðταÞ,
as is done in Fig. 6 for ε ¼ 0.70, 0.80, 0.90, and 1.00.
We find that a single power law χ4ðταÞ ∝ ξd−pðταÞ, with
d − p ≈ 1.6, provides a good fit for the data corresponding
to all values of ε. In fact, attempting separate fits for each ε
leads to obtaining exponents that are equal to each other
within error bars.
In summary, we studied dynamical heterogeneity in a 2d

driven granular fluid in the range of packing fractions
0.6 ≤ ϕ ≤ 0.805. The four-point dynamic structure factor
was shown to obey scaling, S4ðq; ταÞ=χ4ðταÞ ¼ sðqξðταÞÞ,
where the scaling function is well fitted by the Ornstein-
Zernicke form for small argument. This allowed us to
determine the dynamic susceptibility χ4ðταÞ and the corre-
lation length ξðταÞ independently. Both were shown to
grow dramatically with the packing fraction ϕ and can be
well fitted by divergent power laws within the range of
packing fractions accessible to our simulations. For resti-
tution coefficients 0.7 ≤ ε ≤ 1.0, and a wide range of
cutoffs 0.6 ≤ a=r1 ≤ 3.0, we found a robust scaling
χ4ðταÞ ∝ ξd−pðταÞ, with d − p ≈ 1.6, implying that the
correlated regions are neither stringlike nor compact. We
conclude that the observed scaling of dynamical hetero-
geneities is remarkably universal with respect to dissipation
and much stronger in 2d than in 3d.
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