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We analyze the linear growth of the magnetorotational instability (MRI) in the short-time limit using
nonmodal methods. Our findings are quite different from standard results, illustrating that shearing wave
energy can grow at the maximum MRI rate −dΩ=d ln r for any choice of azimuthal and vertical
wavelengths. In addition, by comparing the growth of shearing waves with static structures, we show that
over short time scales shearing waves will always be dynamically more important than static structures in
the ideal limit. By demonstrating that fast linear growth is possible at all wavelengths, these results suggest
that nonmodal linear physics could play a fundamental role in MRI turbulence.
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Since the seminal work of Balbus and Hawley [1],
magnetorotational instability (MRI) has emerged as prom-
ising explanation for the observed momentum transport in
accretion disks. In particular, the nonlinear development
of the instability has been shown to lead to sustained turbu-
lence and dynamo action in both local shearing box (e.g.,
Refs. [2–4]) and global (e.g., Ref. [5]) nonlinear simulations.
Despite substantial concern about transport convergence
with dissipation parameters [6,7], it seems that such results
are relatively robust [4], persisting both with and without
an imposed magnetic field and somewhat independently of
boundary conditions and background density profiles [3].
Nonetheless, even in the simplest local case, a thorough
understandingof the nature of the turbulence and the dynamo
mechanism is lacking (see, for instance, Ref. [8]). Several
promising closure models and dynamo ideas (e.g.,
Refs. [9–14]) require further testing, and there has been less
work on the nature of the turbulent cascade [15] (if it even
exists in the usual sense [6,16]). The relevance of linear
eigenmodes in these processes seems to have mostly been
discounted (e.g., Ref. [7]), although there havebeenhints that
linear waves advected by the mean flow (shearing waves,
sometimes called spatial Fourier harmonics or Kelvin
modes) have substantial dynamical importance [10,12].
The study of the linear eigenmodes of a system is, in

the most basic sense, an attempt to answer the following
question: How much can the system grow in time and what
initial conditions will maximize this growth? If said system
is self-adjoint in a physically relevant norm, the eigenspec-
trum is certainly the best way to approach this problem;
initializing with the most unstable eigenmode will maxi-
mize growth of the disturbance at all times. However, the
question becomes more complex if the linear operator is not
self-adjoint and nonmodal effects become important [17].
In particular, the answer can depend enormously on the
time at which one wishes to maximize the growth, and the

eigenvalue result is correct only in the limit t → ∞. If one
studies growth over shorter times, not only can growth
rates be very much larger than predicted with eigenvalue
analysis, but the most relevant structures can look very
different from the eigenmodes. Investigations in this vein
have been particularly fruitful in fluid dynamics, where
they have cleanly answered long-standing questions about
subcritical transition to turbulence in spectrally stable
systems [18].
In this Letter we approach the linear stability of MRI

from the nonmodal standpoint, studying the short-time
growth of perturbations. The picture that emerges suggests
that eigenmode and asymptotic shearing wave growth
estimates can be quite misleading, since over shorter time
scales relevant to a turbulent situation the growth can be
very different than in the long-time limit. In particular,
we prove that shearing wave structures (we include the
axisymmetric mode as a special case of this) always grow
faster over short time scales than static (eigenmode-like)
structures so long as dissipation is not too large.
Interestingly, the local ideal short-time energy growth rate
has the same maximum value, −dΩ=d ln r, regardless
of the vertical and azimuthal wavelengths. We also show
how such calculations can be extended to more general
situations with a weakly spatially dependent shearing wave
expansion, considering an incompressible global model
motivated by liquid metal experiments [19]. Finally, we
confirm these ideas numerically, demonstrating that the
fastest growing nonaxisymmetric linear structures in global
domains are shearing waves, with growth rates many times
larger than the most unstable eigenmodes. Such calcula-
tions establish a natural connection between global modes
and local shearing waves, illustrating that in almost all
situations a local calculation will give a more accurate
indication of important moderate-time linear behavior than
the global eigenmodes.
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The significance of transient growth for nonaxisymmet-
ric MRI has been recognized in many previous papers
(e.g., Refs. [20–25]), which have mainly focused on the
transience brought about by the time-dependent spatial
structure of shearing waves. Our considerations focus on
the non-normality of the linear operator and differ in several
respects from prior works:
(1) Curiously, it is generally assumed that shearing

waves are the most relevant structures in local inquiries,
while most global studies consider eigenmodes (however,
see Refs. [21,26]). We advocate that the dynamical rel-
evance of each type of structure should be determined
based on growth rates, since strongly amplified structures
will dominate when starting from random initial conditions.
With this in mind, we prove (within the WKB approxi-
mation) that in almost all regimes shearing waves grow
faster on short time scales.
(2) We find that the fastest short-time shearing wave

growth occurs in a regime where previous analytic results
[20,22,23] are not valid.
(3) We find that transient growth can be significant even

for axisymmetric modes in the local case (channel modes).
(4) We argue that both shearing waves and eigenmodes

can be important in many situations. While shearing waves
invariably grow faster over moderate time scales, they can
transition into an eigenmode as the radial wave number
becomes large and continue growing (if the eigenmode is
unstable). In this way the eventual decay of shearing waves
at finite diffusivity is not physically important, even with-
out consideration of nonlinearities. This viewpoint provides
a natural connection between local and global nonaxisym-
metric modes.
Local calculation.—Our starting point is the local

incompressible magnetohydrodynamic (MHD) equations
in a rotating frame:

∂u
∂t þ ðu ·∇Þuþ 2Ωẑ × u ¼ −∇pþ∇ × B × B

þ 2qΩ2xx̂ −∇Φþ ν̄∇2u;

∂B
∂t þ ðu ·∇ÞB ¼ ðB · ∇Þuþ η̄∇2b;

∇ · u ¼ 0; ∇ · B ¼ 0: ð1Þ

These are obtained from the standard MHD equations with
radial stratification by considering a small Cartesian volume
(at r0) corotating with the fluid at angular velocity ΩðrÞ ∼
Ω0r−q [27]. In Eq. (1), the directions x; y; z correspond,
respectively, to the radial, azimuthal, and vertical directions
in the disk. We have used dimensionless variables normal-
ized by the length scale L0 and the time scale 1=Ω—as such,
Ω≡Ωðr0Þ ¼ 1 in Eq. (1). Since all parameters in our
problem are of order 1, the fluid and magnetic diffusivities ν̄
and η̄ are the inverses of the fluid and magnetic Reynolds
numbers, respectively. The background velocity is azimuthal

with linear shear in the radial direction, u0 ¼ −qΩxŷ, and
the background magnetic field is taken to be constant,
B0 ¼ ð0; B0y; B0zÞ. We linearize about this background
and Fourier analyze in y and z, denoting the respective
wave numbers ky and kz. Changing to convenient Orr-
Sommerfeld–like variables [22], u¼ux, B ¼ Bx,
ζ¼ ikzuy− ikyuz, η¼ ikzBy− ikyBz, we are left with four
coupled partial differential equations in x and t.
The general idea of nonmodal growth calculations

is to compute, for some chosen time, the initial con-
ditions that lead to the maximum growth of the solution
under the chosen norm. We use the energy of the
perturbation, E ¼ R

dxðjuj2 þ jBj2Þ, as the norm
throughout this work, since it seems the most physically
relevant choice [18]. For the sake of clarity, consider the
general linear system ∂U=∂t ¼ LðtÞUðtÞ, with solution
UðtÞ ¼ KðtÞUð0Þ. The maximum growth at t,

GðtÞ ¼ maxUð0Þ∥KðtÞUð0Þ∥2
E
=∥Uð0Þ∥2

E
(where ∥U∥

2

E
¼

U† ·MEðtÞ ·U denotes the energy norm of U), can be
calculated by changing to the 2-norm using the Cholesky
decomposition

∥U∥
2

E
¼ U† ·MEðtÞ ·U ¼ U† · F†ðtÞFðtÞ ·U ¼∥FðtÞU∥

2

2

ð2Þ

and computing the largest singular value of the matrix
FðtÞKðtÞF−1ð0Þ. For the analytic results presented
in this Letter, we compute the growth rate at t ¼ 0þ,

Gþ
max ¼ maxUð0Þ∥UðtÞ∥−2

E

d
dt∥UðtÞ∥2

E
j
t¼0þ

. Note that for a

self-adjoint system, Gþ
max is simply (twice) the most

unstable eigenvalue. Differentiating KðtÞ, changing to
the 2-norm and defining Λ ¼ FLF−1 þ ∂tFF−1jt¼0, we
obtain the result

Gþ
max ¼ λmaxðΛþ Λ†Þ; ð3Þ

where λmax denotes the largest eigenvalue [28].
Motivated by the ubiquitous occurrence of shearing waves

in simulations, we wish to compare the growth of shearing
structures with eigenmodes. Noting that the defining char-
acteristic of an eigenmode is that its wave number is constant
in time, we consider these at a given x value using a WKB
approximation and term these static waves. While caution is
advised in attempting to predict stability using such methods
[29], here we are simply comparing static and shearing
growth at a given kx. Thus, subtle issues regarding the choice
of kx relevant to an eigenmode are alleviated and we make
no claim that these approximations are a substitute for the
solution of the x dependent problem (but see Ref. [30]). Note
that in both cases (static and shearing) the growth calculation
is nonmodal; we insert an ansatz for the spatial form of the
disturbance to better understand the structures that will
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appear in an x dependent nonmodal solution. The static
equations can easily be derived to lowest order by inserting
the WKB ansatz fðx; tÞ ∼ fðtÞeikxx and substituting ∂

∂t →∂
∂t − iu0ky ¼ ∂

∂t þ iqxky (this simply shifts the spectrum
without changing growth rates). The shearing wave equa-
tions are locally exact [31] and are derived by inserting
fðx; tÞ ¼ fðtÞ exp½iqkyðt − t0Þx� for each independent
variable. We obtain

∂
∂tUðtÞ

¼

0
BBBB@
−ν̄k2−2Ξqkxky=k2 −2ikz=k2 iF 0

iðq−2Þkz −k2ν̄ 0 iF

iF 0 −k2η̄ 0

0 iF −iqkz −k2η̄

1
CCCCAUðtÞ;

ð4Þ

whereΞ ¼ 0 or 1 for static and shearing waves, respectively,
F ¼ kyB0y þ kzB0z, k2¼ k2xþk2yþk2z , UðtÞ ¼ ðu; ζ; B; ηÞ,
and we have used Ω ¼ 1. For the shearing waves, the equa-
tions are time dependent since kx ¼ qkyðt − t0Þ. Solving
for the eigenvalues of Eq. (4) with kx ¼ ky ¼ 0 leads to the
standard MRI dispersion relation [1].
Converting the energy norm into ðu; ζ; B; ηÞ variables

gives the inner productF¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2ðk2yþk2zÞ−1

q
diagðk;1;k;1Þ,

where diagð Þ denotes the diagonal matrix [see Eq. (2)].
Using Eq. (3) we obtain the remarkably simple results:

Gþ
max ¼ max

(
q kz

k − 2ν̄k2

q kz
k − 2η̄k2

ð5Þ

for the static waves (with maxf∶ denoting the maximum of
the two functions), and

Gþ
max ¼ max

8>><
>>:

q

�
1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2xk2y

k2

q
− kxky

k2

�
− 2ν̄k2

q

�
1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2xk2y

k2

q
þ kxky

k2

�
− 2η̄k2

ð6Þ

for the shearingwave solutions, with k, kx evaluated at t ¼ 0.
Consider first the ideal limit of Eqs. (5) and (6),

ν̄ ¼ η̄ ¼ 0. We see that at all wave numbers the shearing
wave can grow faster than a static structure (or as fast at
kx ¼ 0 where they are identical). In addition, the shearing
wave growth rate has maxima at kxð0Þ ¼ �ky, at which the
growth is qΩ, i.e., the maximum eigenvalue of the MRI,
reached when ky ¼ kx ¼ 0, kz ¼ 1=B0z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
15=16

p
. Thus, in

the ideal limit, the MRI can have the same growth rate, qΩ,
for any choice of ky, kz, so long as the shearing wave initial
condition satisfies kxð0Þ ¼ �ky. We note that all channel
mode perturbations (kx ¼ ky ¼ 0) grow at the same rate qΩ,
showing that even this most basic of MRI modes can grow

transiently when kz ≠ 1=B0z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
15=16

p
. This transient growth

is a real physical effect; indeed, in the ideal limit any
axisymmetric perturbation involvingBx can grow arbitrarily
large through simple advection. At all wave numbers, the
initial conditions to obtain Gþ

max are either purely hydro-
dynamic or purely magnetic. Of course, these pure modes
will quickly become mixed under time evolution due to
coupling terms inEq. (4).Unsurprisingly, addingdissipation
alters this result. In particular, static waves can grow faster
than shearing waves at sufficiently high wave numbers
when Pm ¼ ν̄=η̄ ≠ 1, with Pm > 1 (Pm < 1) causing static
structures to dominate for kxð0Þ < 0 [kxð0Þ > 0].
Inclusion of global effects.—We can extend this result

to situations in which aspects of the local approximation
may not hold (see, e.g., Refs. [32,33]) by starting our
analysis from the standard MHD equations in cylindrical
coordinates [34] and considering shearing and static
waves with weak dependence on the radial coordinate.
Motivated by liquid metal experiments [19,33], here
we consider the incompressible MHD equations at con-
stant density with the velocity profile u0 ¼ U0θr−qþ1θ̂
and the magnetic field profile B0 ¼ B0θr2Rbþ1θ̂þ B0zẑ.
The extension of the technique to more complex strati-
fications and compressibility [24,32] is straightforward.
Nondimensionalizing the equations and Fourier analyzing
in θ and z, we obtain a system of eight linear partial
differential equations in r and t. These are reduced to four
equations with the variable transformation, u¼ur, B¼Br,
ζ¼ ikzuθ− imr uz, η ¼ ikzBθ − i mr Bz, where m and kz are
the azimuthal and vertical wave numbers.
The static wave equations are obtained in much the

same way as for the local case, by inserting the ansatz
fðr; tÞ ∼ fðtÞeikrr and assuming ðkrr; kzr; mÞ ∼ 1=ϵ,
ðν̄; η̄Þ ∼ ϵ2 to obtain a set of ordinary differential equations
in time [35]. Similarly, the shearing wave equations are
obtained by assuming a shearing wave envelope that varies
slowly in the r direction. To lowest order, they can be
straightforwardly derived by inserting the ansatz fðr; tÞ ∼
fðtÞ exp½−i mr U0r−qþ1ðt − t0Þ� and making the same
ordering assumptions as for the static case. After non-
dimensionalizing variables using the length scale r and the
time scale 1=ΩðrÞ, one obtains

∂tU

¼

0
BBBBB@

−k2ν̄ − 2qΞ mkr
k2 −2ikz=k2 iFðrÞ 2ikzBaz=k2

iðq − 2Þkz −k2ν̄ 2iðRbþ 1ÞkzBaz iFðrÞ
iFðrÞ 0 −k2η̄ 0

−2iRbkzBaz iFðrÞ −iqkz −k2η̄

1
CCCCCAU:

ð7Þ

Here U ¼ ðu; ζ; B; ηÞ, Ξ ¼ 1 or 0 for shearing
waves and static waves, respectively, Baz ¼ B0θr2Rbþ1,
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FðrÞ ¼ kzB0z þmBaz, wave numbers (kr, kz) have been
scaled by r and (ν̄, η̄) have been scaled by r2ΩðrÞ. In the
static case we have substituted ∂

∂t →
∂
∂t − iu0m=r (as for

the local calculation) and for the shearing wave,
kr ¼ qU0mr−qðt − t0Þ. While all variables in Eq. (7) tech-
nically depend on both r and t, the dependence on r is
parametric. The static version (Ξ ¼ 0) of Eq. (7) is very
similar to the dispersion relation given in Ref. [33], aside
from slight differences in how the azimuthal wave number
m appears in the dissipation terms. Note that Eq. (7)
reduces to Eq. (4) in the “local” limit [27].
Applying the same procedure as earlier to calculate the

t ¼ 0þ growth rates leads to

Gþ
max ¼�

��
k2ðη̄− ν̄Þ−Ξq

krm
k2

�
2

þ 4Bazð1þRbÞ2 k
2
z

k2

�
1=2

þ q
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þΞ

m2k2r
k2

s
− k2ðη̄þ ν̄Þ; ð8Þ

with the � chosen to obtain the maximum value of Gþ
max.

Note that jr∂rfj2 ≈ r2j∂rfj2 has been applied in the energy
norm used to calculate Eq. 8, in keeping with approxima-
tions used earlier. Equation 8 demonstrates that the funda-
mental results presented earlier are essentially unchanged
by the addition of field curvature effects, as well as
illustrating the importance of shearing waves in flows with
more complex shear profiles. The extra terms in the global
equations change the maximum of Gþ

max with respect to
kxð0Þ, and theMRI can grow faster than qΩ for strongB0θ. It
is interesting that for the very large η̄ characteristic of liquid
metal experiments, there is a large regime [for kxð0Þ > 0]
where static structures grow faster than shearing waves.
Nonmodal growth in a global domain.—We now illus-

trate the relevance of nonmodal growth in global domains
with boundaries. As well as demonstrating that shearing
waves [Eqs. (4) and (7)] often have greater applicability
than eigenmodes to the global linear problem, the non-
modal standpoint provides a concrete connection between
global modes and shearing box dynamics. We solve the
incompressible MHD equations in cylindrical coordinates
with hard-wall boundaries, linearized about the background
flow velocity u0 ¼ U0θr−1=2θ̂. We discretize radially with
Chebyshev polynomials on the domain r ¼ 0.25 → 2.25,
and consider a single azimuthal and vertical wave number.
While it would be more realistic to include density
stratification and compressibility in such a model, the
general conclusions are unaltered by the addition of such
effects. As outlined in Ref. [18], the nonmodal calculation
solves for the initial conditions that maximize the energy
amplification by some chosen time tM.
The time evolution of the spatial structure of this

nonmodal solution for a weakly nonaxisymmetric mode
(with tM ¼ 10) is illustrated in Figs. 1(a)–1(c), with the
most unstable eigenmode shown for comparison [Fig. 1

(d)]. Note the strong resemblance of the nonmodal structure
to a shearing wave as well as its localization far from the
boundary (around r ≈ 1) in stark contrast to the eigenmode.
To demonstrate the dynamical relevance of the shearing
wave equations as opposed to the global eigenmode, in
Fig. 2 we compare the energy growth of the nonmodal
structure (at r ¼ 1) with that of the solution to Eq. (7) [36]
and the most unstable eigenmode. The parameters in
Eq. (7) are taken from the global parameters (with t0 ¼
4.6 to match the global nonmodal solution), and the initial
conditions are calculated using the nonmodal technique,
maximizing energy growth at t ¼ 10. The most obvious
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FIG. 1. (a)–(c) Time evolution of the spatial structure of the
radial magnetic field perturbation in ðr; θÞ that maximizes energy
amplification at tM ¼ 10. The global parameters are m ¼ 2,
kz ¼ 15, U0 ¼ 1, B0z ¼ 1=30, Baz ¼ 0, ν̄ ¼ η̄ ¼ 1=10000.
White and black regions show positive and negative values
respectively. (d) Spatial structure of the most unstable eigenmode
for the same parameters.
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FIG. 2 (color online). Energy amplification, ErðtÞ≡
Eðr ¼ 1; tÞ=Eðr ¼ 1; 0Þ, of the global nonmodal solution
(dashed line), the most unstable eigenmode (dotted line), and
the solution of the local shearing wave equations [Eq. (4)] (solid
red line). Parameters are the same as Fig. 1. The black dots
illustrate the time frames shown in Fig. 1.
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feature in Fig. 2 is that the nonmodal solution grows many
times faster than the eigenmode, showing its greater dynami-
cal relevance. In addition, we see that the shearing wave
approximation is very accurate, with the only difference
coming at late times when the global solution departs from
a pure shearing wave due to the finite resistivity. Evidently,
the strong flow shear necessitates the use of nonmodal
techniques inMRI stability calculations, while consideration
of shearing waves allows the extension of local stability
methods to these situations with surprising accuracy.
Conclusions.—We have analyzed the short-time growth

rate of the MRI from a nonmodal standpoint. By comparing
the growth of shearing and static waves, we prove that
shearing structures always dominate in the ideal limit and that
the peak growth rates are identical to those of the axisym-
metric channel mode at all scales. Of course, this result
contains no information about the length of time over which
the short-time growth can persist, and thus the overall ampli-
fication of a given mode over finite times. Indeed, since the
growth rates are completely independent of magnetic field,
more information is certainly needed to consider a quasi-
linear mechanism for the accretion disk dynamo [37]. Most
important is probably the provision for growth over finite
time scales (e.g., Fig. 2) or with driving noise [38], as well as
the effects of spatial inhomogeneity in the background fields
[10]. Aside from such problems, the results are suggestive
about the character of the turbulence in shearing MHD
systems. In particular, the strong linear amplification over
short times at all dynamically relevant scales supports the
idea that MRI turbulence should not exhibit a well-defined
inertial range [6,16]. Given this, might many of the turbu-
lence properties bewell understood by considering primarily
linear physics? In any case, no matter how applicable such
concepts might turn out to be, it seems clear that an over-
reliance on eigenvalue and dispersion relation analyses can
lead to incorrect growth predictions in many regimes.

We extend thanks to Dr. Jeremy Goodman for enlight-
ening discussion. This work was supported by Max Planck/
Princeton Center for Plasma Physics and U.S. DOE (DE-
AC02-09CH11466).
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