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In nonlinear dynamical systems with highly nonorthogonal linear eigenvectors, linear nonmodal analysis is
moreuseful thannormalmodeanalysis inpredicting turbulentproperties.However, thenontrivial timeevolution
of nonmodal structures makes quantitative understanding and prediction difficult. We present a technique to
overcome this difficulty by modeling the effect that the advective nonlinearities have on spatial turbulent
structures. The nonlinearities are taken as a periodic randomizing force with time scale consistent with critical
balance arguments. We apply this technique to a model of drift wave turbulence in the Large Plasma Device
[W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)], where nonmodal effects dominate the turbulence.
We compare the resulting growth rate spectra to the spectra obtained from a nonlinear simulation, showing
good qualitative agreement, especially in comparison to the eigenmode growth rate spectra.
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Normal mode analysis—the calculation of eigenvalues
and eigenvectors of a linearized dynamical system—has
been used to solvemany problems over the years. Despite its
wide-ranging success, it has failed in important instances,
particularly in predicting the onset of subcritical turbulence
in hydrodynamic flows. The reason for this failure was
explained in the early 1990s when Trefethen and others
attributed the pitfalls of normal mode analysis to the non-
normality of linear operators of dynamical systems [1,2].
A non-normal operator has eigenvectors that are not
orthogonal to one another. One consequence of eigen-
vector nonorthogonality is that even when all eigenvectors
decay exponentially under linear evolution, superpositions
of eigenvectors can grow, albeit transiently. In other words,
certain fluctuations of the laminar state can access free
energy from background gradients even though normal
mode fluctuations cannot. When combined with nonlinear
effects, this allows for sustained subcritical turbulence. Such
behavior is obscured by traditional normal mode analysis,
which only effectively describes the long time asymptotic
behavior of fluctuations under action of the linear operator.
Transient growth, which can dominate turbulent evolution,
can be discovered only through nonmodal calculations.
Nonmodal analysis has been embraced by the hydro-

dynamics community over the past two decades in the
attempt to explain and predict subcritical turbulence. But
the plasma community generally relies on normal mode
analysis to inform turbulent predictions and observations,
with a few exceptions [3–5]. Furthermore, nonmodal treat-
ments have generally been explanatory rather than predic-
tive and have centered around the transition to turbulence
in subcritical systems rather than on properties of fully
developed turbulence. This Letter takes up the task of
developing an approach to understand highly non-normal
(implying highly collisional [3]) turbulent properties using

only nonmodal linear calculations with the goal of ulti-
mately making quantitative predictions. Our approach is to
calculate an average growth rate of turbulent fluctuations
due to linear processes, specifically due to transient growth.
We model the turbulent steady state as a series of processes:
(1) The turbulence starts as a spatially random state.
(2) Linear transient growth deterministically amplifies the
turbulent energy (or decreases it in wave number ranges
where linear damping dominates). (3) Nonlinear transfer
sets in at a specified time scale, terminating the transient
growth process and rerandomizing the turbulent state (at
which point the cycle repeats). Optimally, the time scale
for the final step would be the nonlinear decorrelation time
of the turbulent system, but in order to enable predictive
capability, we employ critical balance arguments to use a
characteristic linear time. Since there is no obvious single
linear time scale, we test several and compare the results
to determine which works best. The procedure ultimately
produces growth rate spectra that can be used to predict
turbulent properties such as saturation levels and transport
rates through mixing length arguments. While the concepts
behind this technique are general enough to be applied to
various nonlinear dynamical systems, the details vary for
each case, so we restrict our treatment to one particular
turbulence model. For this model, the technique does
reasonably well in reproducing the turbulent growth rate
spectrum of the direct nonlinear simulation, especially in
comparison to the linear eigenmode spectrum.
The model we use describes highly collisional pressure-

gradient-driven turbulence in the uniformly magnetized,
cylindrical plasma produced by the Large Plasma Device
[6]. We use a reduced Braginskii 2-fluid model [7–11]:

∂tN ¼ −vE · ∇N0 − N0∇∥v∥e þ SN þ fϕ; Ng; ð1Þ

PRL 113, 025003 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
11 JULY 2014

0031-9007=14=113(2)=025003(5) 025003-1 © 2014 American Physical Society

http://dx.doi.org/10.1063/1.1142175
http://dx.doi.org/10.1103/PhysRevLett.113.025003
http://dx.doi.org/10.1103/PhysRevLett.113.025003
http://dx.doi.org/10.1103/PhysRevLett.113.025003
http://dx.doi.org/10.1103/PhysRevLett.113.025003


∂tv∥e ¼ −
mi

me

Te0

N0

∇∥N − 1.71
mi

me
∇∥Te

þ mi

me
∇∥ϕ − νev∥e þ fϕ; v∥eg; ð2Þ

∂tϖ ¼ −N0∇∥v∥e − νinϖ þ fϕ;ϖg; ð3Þ
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where N is the density, v∥e is the parallel electron velocity,
ϖ ≡∇⊥ · ðN0∇⊥ϕÞ is the potential vorticity, Te is the
electron temperature, vE is the E ×B velocity, and SN and
ST are density and temperature sources. All lengths are
normalized to the ion sound gyroradius ρs, times to the
ion cyclotron time ω−1

ci , velocities to the sound speed cs,
densities to the equilibrium peak density, and electron
temperatures and potentials to the equilibrium peak electron
temperature. The profiles N0 and Te0 and other parameters
are taken from experimental measurements [10–12].
The equations are global and we retain advective non-

linearities, which are written with Poisson brackets, but we
neglect other nonlinear terms.We add artificial diffusion and
viscosity terms with small numerical coefficients (10−3) to
ensure numerical stability in nonlinear simulations, which
are performed with the BOUT++ code [13]. We use periodic
axial and zero value radial boundary conditions. Further
details of the model, including validation studies, may be
found in the references [7–11]; though we mention here
that the model does very well in reproducing the statistical
properties of the experimentally observed turbulence.
The nonlinear simulation reveals a fascinating property of

the turbulence—it is dominated by a nonlinear instability
process despite being linearly unstable to drift waves
[10,11]. The nonlinear instability, which was discovered
by Drake et al. [14], works as follows: magnetic-field-
aligned (k∥ ¼ 0) convective filaments transport density
across the equilibrium density gradient, setting up k∥ ¼ 0
density filaments. These filaments are unstable to secondary
drift waves, which grow on the periphery of the filaments.
These drift waves, which have finite k∥, nonlinearly couple
to one another and generate new convective filaments.
Although the instability is called a nonlinear instability,

the first part of the mechanism—the transport of back-
ground density by the convective filaments—is a linear
one. In fact, the other parts of the mechanism are driven by
energetically conservative nonlinear interactions, meaning
that the convective transport is the only step responsible for
energy injection into the fluctuations.
Deriving an equation for the evolution of the energy from

Eqs. (1)–(4) [10,11], we may symbolically write

dEðm; nÞ
dt

¼ dElðm; nÞ
dt

þ dEnlðm; nÞ
dt

; ð5Þ

where m and n represent the azimuthal and axial Fourier
mode numbers. dElðm; nÞ=dt comes from the linear terms
in Eqs. (1)–(4). dEnlðm; nÞ=dt comes from the nonlinear
terms. dElðm; nÞ=dt represents the injection (or dissipa-
tion) of energy into the fluctuations from the free energy in
the equilibrium gradients. dEnlðm; nÞ=dt accounts for the
energy exchange between fluctuations with different m, n
and it is conservative:

P
m;ndEnlðm; nÞ=dt ¼ 0. Moreover,

in quasi-steady-state turbulence, the rate of energy injection
(or dissipation) into the fluctuations at each m, n by the
linear terms must be balanced by the rate of energy removal
(or deposition) from the nonlinear terms:

γðm; nÞ≡ lim
T→∞

1

T

Z
T

0

dEðm; nÞ=dt
2Eðm; nÞ dt

¼ lim
T→∞

Log½EðTÞ=Eð0Þ�
T

¼ 0 in steady state: ð6Þ

From, Eqs. (5) and (6), it follows that γðm;nÞ¼γlðm;nÞþ
γnlðm;nÞ¼0. The rate of energy injection γlðm; nÞ from
the equilibrium gradient into the fluctuations is a quantity
of great interest [10,15]. When positive for some wave
number, turbulence can be sustained. Additionally, it may
be used in a mixing length argument to predict the turbulent
saturation level, which can in turn be related to the rate of
cross-field transport [15]. γlðm; nÞ may be calculated from
the spatial structures of the plasma state variables, so it is
always well defined, even in a turbulent plasma. We plot
γlðm; nÞ in Fig. 1(a) for both the linear and steady state
turbulent stages of our nonlinear simulation. The linear

(a) (b)

FIG. 1 (color online). (a) Linear and turbulent growth rate
spectra for n ¼ 0 (solid lines) and n ¼ 1 (dashed lines) Fourier
components. The linear growth rates are those of the least
stable eigenmodes, while the turbulent growth rates represent
ð∂El=∂tÞ=2E from the nonlinear simulation. The shaded region
marks the 1σ spread in the turbulent spectrum, obtained from the
distribution of growth rates in the nonlinear simulation. (b) Linear
evolution of energy starting from a turbulent initial state. The
n ¼ 0 curves have an initial period of transient growth before
exponentially decaying.
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stage, which occurs when fluctuations are small and
exponentially growing has a time-independent γlðm; nÞ
equal to γsðm; nÞ—the “spectral” growth rate of the fastest
growing eigenmode at eachm, n. During the turbulent stage,
γlðm; nÞ is time dependent (indicated by the 1σ spread),
and generally much different than γsðm; nÞ. Significantly,
the turbulent γl is positive at n ¼ 0 and low m despite the
fact that all linear eigenmodes have γs < 0 for n ¼ 0. This is
a manifestation of non-normality, for in normal systems
γlðm; nÞ ≤ γsðm; nÞ. Physically, it is the manifestation of
the nonlinear instability, specifically the linear part of the
mechanism in which convective filaments drive density
filaments from the equilibrium density gradient.
This convective transport of density filaments is akin

to the paradigmatic “lift-up” mechanism in hydrodynamic
shear flows whereby streamwise vortices drive streamwise
streaks [1,16]. Both are transient growth processes. We
see this in our simulations by following the evolution of
the energy of several m, n modes after turning off the
nonlinearities in an already turbulent simulation. A few
representative modes are shown in Fig. 1(b). The linear
transient growth of the filamentary n ¼ 0 structures is
evident as their modes grow transiently before decaying
exponentially at the rate of their least stable eigenmode.
Such behavior is indicative of nonmodal behavior. It must
be since all n ¼ 0 linear eigenmodes are stable. Notice
also that the n ¼ 1,m ¼ 20mode decays transiently before
growing exponentially with the growth rate of the most
unstable eigenmode. This transient decay is also a non-
modal result since γsðn ¼ 1; m ¼ 20Þ > 0.
Since transient growth is a purely linear phenomenon, it

has been a goal of researchers to understand and predict
the onset of subcritical turbulence using only linear,
nonmodal calculations. In our system, the turbulence is
not subcritical in the traditional sense, but it has a
subcritical component because γlðm < 50; n ¼ 0Þ > 0,
yet γsðm; n ¼ 0Þ < 0. It is our goal, then, to use linear
nonmodal calculations to understand this behavior and to
move toward predictive capability of γl. To accomplish
this, we make the ansatz that nonlinearities randomize the
turbulent spatial structure at each wave number on a time
scale of one eddy decorrelation time, while the linearities
evolve the spatial structures deterministically. From this
we can calculate a nonmodal γn−m spectrum, which is our
prediction of the turbulent γl spectrum. To illustrate, we
begin by taking Eqs. (1)–(4) and Fourier decomposing
in the azimuthal and axial directions. Then, we discretize
in the radial direction and approximate radial derivatives
with finite differences. The resulting system of equations
may be written in matrix form:

Bm;n
dvm;nðtÞ

dt
¼ Cm;nvm;nðtÞ
−
X
m0;n0

vE;m−m0;n−n0 ·∇⊥(Bm0;n0vm0;n0 ðtÞ); ð7Þ

where vm;n ¼ (NðrÞ; v∥eðrÞ;ϕðrÞ; TeðrÞ)Tm;n is the state
of the system, and Bm;n and Cm;n are coefficient matrices
that include the equilibrium information and finite differ-
ence coefficients. The first term on the rhs represents the
linearities and the second term the nonlinearities. Note
that for each m, n, there exist 4Nr linearly independent,
but nonorthogonal, eigenvectors, where Nr is the number
of radial grid points. Hence forth, we drop them, n Fourier
subscripts.
In order to use nonmodal analysis to calculate growth

rates and other measures, one must choose a norm and inner
product with which to work. While any choice of inner
product is possible, a physically relevant one such as an
energy inner product is generally preferred [2–4]. Recall
that the inner product of two vectors may be written
hx; yi ¼ y†Mx. We choose M so that ∥v∥2 ¼ hv; vi ¼ E.
Furthermore, it is convenient in computations to use the L2

norm, ∥u∥2
2
¼ P

ijuij2. This can be accomplished through
the change of variables u ¼ M1=2v. Then, the linear portion
of Eq. (7) becomes

du
dt

¼ Au; where A ¼ M1=2B−1CM−1=2: ð8Þ

The solution of Eq. (8) is uðtÞ ¼ eAtuð0Þ, which depends
on the initial condition uð0Þ. For purposes of turbulent
growth rate prediction, we are interested in the behavior
of GðtÞ ¼ EðtÞ=Eð0Þ ¼∥uðtÞ∥2=∥uð0Þ∥2.
It is common practice in normal mode analysis to look

for the least stable eigenmode. For the nonmodal case,
it is common to study the properties of GmaxðtÞ ¼∥eAt∥2
because if this is greater than unity at any time, fluctuations
may be amplified, leading to subcritical turbulence [2,17].
However, it can be misleading to study only GmaxðtÞ
when predicting specific properties of turbulence because
GmaxðtÞ is only the upper envelope of all possible GðtÞ
curves. No one particular initial condition uð0Þ evolves
along GmaxðtÞ. Furthermore, it is not obvious what kind of
spatial structures will come to dominate a turbulent system.
In non-normal systems, unlike in normal systems, optimal
structures do not amplify themselves; rather, they evolve
while increasing the total fluctuating energy.
We contend that the key to understanding and predicting

turbulent properties through nonmodal analysis is to
successfully model the effect that the nonlinearities have
on the transient linear processes. To this effect, we note that
the advective nonlinearity in Eq. (7) has the form of the
state vector divided by a time τnl ∼ ðvEk⊥Þ−1. This non-
linear time scale is generally associated with the eddy
turnover or decorrelation time. We therefore present a
heuristic model of the nonlinearities as a randomizing
force that acts on this characteristic nonlinear time scale.
Again, this model is one in which the turbulence (1) begins
as a random state, (2) evolves linearly for a time τnl, and (3)
randomizes by nonlinear energy transfer, at which point
the steps repeat. In practice, we implement this model by
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starting with an ensemble of random initial conditions,
which we evolve linearly for a time τnl, and then take the
time and ensemble averaged growth rate of these curves.
This procedure does not require actual linear simulations
from an ensemble of random initial conditions. To see this,
recall that the time evolution of the energy from an initial
condition is

EðtÞ ¼∥eAtuð0Þ∥2 ¼ eAtuð0Þu†ð0ÞeA†t: ð9Þ

If the uð0Þ in the ensemble are random with uncorrelated
components and normalized to unity, it follows that [3]

hEðtÞ=Eð0Þiens ¼
1

4Nr
trfeAteA

†tg: ð10Þ

We show the validity of this statistical averaging by plot-
ting an ensemble of 1000 curves generated with different
random initial conditions in Fig. 2 along with their
expected average from Eq. (10) and their actual average,
which agree well. One point to note is that in global
equation sets like ours—where we discretize and use finite
differences in the radial direction rather than a Fourier
decomposition—randomizing uð0Þ amounts to setting the
initial kr spectrum to a step function that goes to zero at the
Nyquist wave number. This means that hEðtÞ=Eð0Þiens may
depend on Nr, so we must be careful in choosing Nr for
this analysis. We choose Nr such that the grid spacing
equals ρs, the general Nyquist wave number of drift wave
simulations [18].
Mathematically, our procedure is to calculate γn−m by the

following formula:

γn−m ¼ 1

τnl

Z
τnl

0

∂EðtÞ
∂t

2EðtÞ dt ¼
1

2τnl
Log

�
EðτnlÞ
Eð0Þ

�
; ð11Þ

where EðtÞ is the ensemble averaged energy calculated
from Eq. (10), and Eð0Þ ¼ 1 by our normalization. In order
to move toward predictive capability, we must estimate
τnl with only knowledge of linear (modal or nonmodal)
information. We thus invoke the conjecture of critical
balance, which posits that the nonlinear time scale equals
the linear time scale at all spatial scales [5]. This follows
from the previously derived steady-state result: γl ¼ −γnl.
Now there are several linear time scales that we may

choose to test. We label these times in Fig. 2 for the case of
n ¼ 0,m ¼ 20. The first linear time is the linear eigenmode
frequency, labeled ω−1

s . However, ωs ¼ 0 for n ¼ 0 linear
eigenmodes, so we are forced to use ωs for the fastest
growing n ¼ 1 eigenmode at each m to get a meaningful
time scale. Second is the parallel free-streaming time of the
electrons tst ¼ L∥=vte often cited in critical balance argu-
ments [19]. Third is the time before modal effects take over,
which can be approximated as the time when EðtÞ turns
over. As seen in Fig. 1(b), EðtÞ can be either a maximum
or minimum before turning over. We label this time Emax.
Fourth, we use the steady-state condition γl ¼ −γnl and the
approximation τnl ∼ 1=jγnlj to get τnl ¼ 1=jγn−mj. Inserting
this into Eq. (11) gives

Log½Eð1=γn−mÞ� ¼ �2 → Eð1=γn−mÞ ¼ e�2: ð12Þ

In other words, we find the time at which EðtÞ grows to the
value of e2 or decays to the value of e−2, and then use this
time to get γn−m. We label this time e2. In Fig. 2, we also
indicate two times labeled tcor, which when inserted into
Eq. (11) give the “correct” γlðm ¼ 20; n ¼ 0Þ calculated
directly from the nonlinear simulation.
In Fig. 3, we compare the γl spectrum from the nonlinear

simulation to γn−m from the nonmodal procedure using
the four different linear time scales. We also show γs for
reference. All of the nonmodal growth rates are positive
at n ¼ 0 for low m, like γl from the simulation and unlike
γs, indicating that the nonmodal analysis can reveal what
normal mode analysis cannot in this turbulent system.

FIG. 2 (color online). An ensemble of initially randomized
growth ratio curves [solid gray lines, with the solid black line
their average, and the dashed orange line the average as
calculated from Eq. (10)]. The vertical lines indicate various
linear time scales.

(a) (b)

FIG. 3 (color online). The growth rate spectra of the spectral
growth rate γs, turbulent simulation growth rate γl, and growth
rates calculated from the nonmodal procedure in Eq. (11). The
growth rates as a function of m for (a) n ¼ 0 and (b) n ¼ 1.
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Furthermore, the choice of linear time scale does not
significantly affect the qualitative picture.
On the other hand, the nonmodal analysis does not

always predict complete stability at n ¼ 1 for all choices
of linear time scale, but it does indicate that n ¼ 1 modes
can dissipate rather than inject fluctuation energy despite
the presence of unstable linear eigenmodes. Finally, we find
that the linear eigenmode time scale ω−1

s gives the best
match to γl for this model.
In summary, we present a procedure for calculating the

turbulent growth rate spectrum using nonmodal linear
calculations. In the case of a simulation of a Large
Plasma Device experiment, this procedure captures the
behavior of a nonlinear instability that dominates the
dynamics of the turbulence. In general, nonmodal analysis
is difficult to quantify and make predictive, but using some
simple nonlinear modeling, we have shown that it may be
possible. Future studies will attempt to test this procedure
on other turbulence models, and see if it can predict critical
parameters for subcritical turbulent onset.
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