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Making use of experimental and theoretical considerations, in this Letter we deduce a criterion to
determine the critical velocity for which a drop impacting a smooth dry surface either spreads over the
substrate or disintegrates into smaller droplets. The derived equation, which expresses the splash threshold
velocity as a function of the material properties of the two fluids involved, the drop radius, and the mean
free path of the molecules composing the surrounding gaseous atmosphere, has been thoroughly validated
experimentally at normal atmospheric conditions using eight different liquids with viscosities ranging from
μ ¼ 3 × 10−4 to μ ¼ 10−2 Pa s, and interfacial tension coefficients varying between σ ¼ 17 and
σ ¼ 72 mNm−1. Our predictions are also in fair agreement with the measured critical speed of drops
impacting in different gases at reduced pressures given by Xu et al. [Phys. Rev. Lett. 94, 184505 (2005).].
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The collision of a drop against a solid surface is
ubiquitous in nature and is present in a myriad of techno-
logical and scientific fields comprising ink-jet printing,
combustion, or surface coating [1–3]. Given the physical
properties of both the liquid and the gas, the atmospheric
pressure [1], the size of the drop, and the physicochemical
properties of the substrate [4], experience reveals that there
exists a critical impact velocity below which the liquid
simply spreads over the surface and above which the original
liquid volume fragments into tiny droplets violently ejected
outwards, creating what is known as a splash (see Fig. 1).
In spite of the number of advances on the subject [1,5–14],
a precise description of the critical conditions leading to
drop splashing, is still lacking [15,16]. Indeed, the well-
known equation deduced twenty years ago by Mundo et al.
[5,11,17], as well as many empirical correlations [14],
provide expressions for the critical velocity which depend
only on the material properties of the liquid, and do not take
into account that splashing is largely affected by the gaseous
atmosphere [1]. In this Letter, we provide a theoretical
framework which is consistent with our own experimental
data and also with all previous findings.
To elucidate the precise conditions under which a drop

hitting a solid surface splashes or not, we perform experi-
ments with millimetric drops of radii R formed quasistati-
cally at normal atmospheric conditions. Eight different
liquids are slowly injected through hypodermic needles
of different diameters. Drops generated in this way are
spherical and fall under the action of gravity onto a dry
glass slide, with a composition such that the liquids, whose
physical properties are listed in Table 1 of the Supplemental
Material [18], partially wet the substrate with a static
contact angle ∼20°. The impact speed V is varied by fixing
the vertical distance between the exit of the needles and the

impactor. To simultaneously record the impact process
from the side with two different optical magnifications and
acquisition rates, two high speed cameras focusing the
impact region are placed perpendicularly to each other.
Figure 1 shows the detailed sequence of events recorded

from the instant T ¼ 0 at which the drop first contacts
the solid. These images reveal that, initially, the drop
deforms axisymmetrically, with AðTÞ the radius of the
circular wetted area [Figs. 1(a)–1(b)] and that an air bubble
is entrapped at the center of the drop [3,19]; however, the
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FIG. 1. (a)–(h) Sequence of events after the impact of an
ethanol droplet of radius R ¼ 1.04 mm for three different impact
velocities, V¼ 1.29ms−1 [(a)–(d), left], V ¼ 2.28 ms−1 [(e)–(h),
right], and V ¼ 2.01 ms−1, (i)–(j). The splash threshold velocity
corresponding to these experiments is V ¼ 2.19 ms−1. The times
in (a)–(c) are identical to those corresponding to images (e)–(g).
The sketch in Fig. 1(k) illustrates the definition of the main
variables used within the Letter.
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presence of this tiny bubble does not affect the splash
process. Figure 1(c) illustrates that for T ≥ Te, a thin sheet
of liquid starts to be expelled from the radial position where
the drop contacts the solid, i.e., AðTeÞ, with Te the ejection
time. Of special relevance for the purposes of this study is
to observe the change of trajectory experienced by the edge
of the sheet as the impact velocity increases. Indeed, for the
smallest values of V [Figs. 1(a)–1(d)], the lamella spreads
tangentially along the solid but, for a range of larger impact
velocities, the liquid initially dewets the substrate and
contacts the substrate again [Figs. 1(i)–1(j)]. For even
higher values of V, the front of the lamella dewets the
solid [Figs. 1(f)–1(g)] and drops are finally ejected radially
outwards [Figs. 1(g)–1(h)] in a way similar to the experi-
ments reported in [20–22]. Therefore, the analysis of
the images in Fig. 1 reveals that, for a splash of the type
illustrated in Figs. 1(e)–1(h) to take place, two conditions
need to be fulfilled simultaneously: the liquid must dewet
the solid and the vertical velocity imparted to the front part
of the lamella needs to be large enough to avoid the liquid
to contact the solid again. To obtain a splash criterion, it is
essential to observe from Figs. 1(i)–1(j) and the movies in
the Supplemental Material [18], that the rewetting is a
consequence of the radial growth of the liquid sheet edge,
caused by capillary retraction. Throughout the Letter,
times, velocities, and pressures are made dimensionless
using R, V, R=V, ρV2 as the characteristic length, velocity,
time, and pressure, with ρ the liquid density and lower-case
letters denoting dimensionless variables (e.g., ht ¼ Ht=R,
vt ¼ Vt=V); the subscript g will be used to denote gas
quantities. Next, the instant Te at which the lamella is
ejected, as well as its initial height and velocity, Ht and Vt,
respectively [see Fig. 1(k)], will be calculated.
Splashing occurs when the values of both the Weber

and Reynolds numbers are such that We ¼ ρV2R=σ ≫ 1,
Re ¼ ρVR=μ ≫ 1, with the dimensionless numbers We
and Re measuring the relative importance of inertial and
surface tension stresses (We) and inertial and viscous stresses
(Re). Consequently, during the characteristic impact time
R=V viscous effects are confined to thin boundary layers of
typical width ∼RRe−1=2 ≪ R [23], a fact suggesting that the
use of potential flow theory [24,25], which neglects liquid
viscosity, is appropriate to describe the liquid flow at the
scale of the liquid drop. For the sake of clarity, we report here
only the main results of the analysis, with further details
provided in the Supplemental Material [18], where using
Wagner’s theory [24] we deduce that the radius of the wetted
region evolves in time as aðtÞ ¼ ffiffiffiffi

3t
p

[26]. Potential flow
theory also predicts that, as a consequence of the sudden
inertial deceleration of the liquid when it hits the wall, a flux
of momentum is directed tangentially along the substrate
[22], giving rise to the ejection of a fast liquid sheet, like the
one depicted in Figs. 1(c) and 1(f)–1(g). The application
of the Euler–Bernoulli equation at the drop’s interface,
where the pressure remains constant, in a frame of reference

moving at a velocity _a [see Fig. 1(k)], yields that fluid
particles are ejected from aðtÞ at a speed relative to that of the
ground given by va ¼ 2_a ¼ ffiffiffiffiffiffiffi

3=t
p

. Moreover, since the flux
of tangential momentum per unit length is ∝ ρV2RaðtÞ [22],
[27], we thus conclude that the height ha of the lamella at the
intersection with the spreading drop, i.e., at the radial posi-
tion r ¼ aðtÞ, is ρV2R _a2ha ∝ ρV2Ra ⇒ ha ∝ a= _a2 ∝ t3=2,
with dots denoting time derivatives [28–30].
Figure 2 shows that the measured radius of the wetted

area perfectly matches a ¼ ffiffiffiffi
3t

p
for all the different impact

events and fluids considered, a result that fully validates our
potential flow calculation. However, while our experimen-
tal evidence indicates that the ejecta sheet is only produced
for t ≥ te, the potential flow approach predicts the gen-
eration of a lamella for t ≥ 0 of vanishingly small thickness
ha ∝ t3=2 with fluid velocity diverging as va ∝ t−1=2.
To understand the differences between potential flow

results and observations note first that, in analogy with
the cases of bubbles bursting at a free interface [31] and
Worthington jets [32,33], the fluid feeding the lamella
comes from a region where shear stresses are negligible,
namely, a very narrow boundary straddling the drop’s
interface [dark shaded region in panel 1(k)], and not from
the boundary layer growing from the stagnation point
located at the axis of symmetry.
Fast fluid particles entering the liquid sheet are rapidly

decelerated within the lamella due to the combined action
of both the viscous shear stresses diffusing from the wall
and capillary pressure. The characteristic dimensionless
thickness δ of the region affected by viscous stresses
at a distance ∼ha ≪ 1 downstream of the jet root [see
Fig. 1(k)], which is the region where the jet meets the
drop, is δ=ha ∼ 1 (see Supplemental Material [18]). The

FIG. 2 (color online). Experimental radius of the wetted area
compared with a ¼ ffiffiffiffi

3t
p

(thin solid line) for We ¼ 98, Re ¼
3462 (water drop). The experimental radial position of the ejecta
sheet, rt, is also represented for times t⩾te, with te the ejection
time. The inset represents the ratio χ=

ffiffiffi
3

p ≃ 1, where χ is the
coefficient obtained from the best fit of a function of the type
a ¼ χ

ffiffi
t

p
to the experimentally measured radius aðtÞ, for a

large range of Weber numbers and two different liquids: water
(blue dots, μ≃ 0.9 cP, σ ≃ 67.5 mNm−1) and a silicon oil
(purple dots) of viscosity μ ¼ 10 cP and surface tension
σ ≃ 19.5 mNm−1. The ratio χ=

ffiffiffi
3

p ≃ 1 also for the rest of the
fluids investigated.
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deceleration, provokes the fluid to accumulate at the
edge of the liquid sheet and, consequently, ht > ha [see
Fig. 1(k)].
To determine te, note from Fig. 2 that, although the

velocities of fluid particles entering the jet are va ¼
2_a > _a, both aðtÞ and rt are tangent to each other at the
instant of ejection, namely, vt ¼ _a at t ¼ te. Thus, since
the lamella can only be ejected if its tip advances faster than
the radius of the wetted area, the condition for sheet
ejection is Dv=Dt ¼ −∂p=∂xþ Re−1∇2v ≥ ä at t ¼ te.
Here, Dv=Dt < 0 is the dimensionless acceleration of
the material points in the sheet given by the momentum
equation, p denotes pressure, and x measures the distance
from the jet root. To determine te, since δ ∼ ht, ∇2v ∼ _a=
h2t ∝ t−1=2e =h2t ; moreover, the increment of pressure expe-
rienced by fluid particles flowing into the edge of the
lamella is the capillary pressure We−1=ht and, thus,
∂p=∂x∼Re−2Oh−2=h2t withΔx ∼ ht and Oh ¼ μ=

ffiffiffiffiffiffiffiffiffi
ρRσ

p ¼ffiffiffiffiffiffiffi
We

p
=Re the Ohnesorge number. Therefore, the critical

condition for sheet ejection Dv=Dt ¼ ä ∝ t−3=2e reads

c1Re−1t
−1=2
e þ Re−2Oh−2 ¼ äh2t ¼ c2t3=2e ; ð1Þ

where we set c1 ¼
ffiffiffi
3

p
=2 for simplicity and c ¼ 1.1

accounts for the proportionality constant in ht ∝ ha ∝
t3=2e . Figure 3(a), illustrates that Eq. (1) very well approx-
imates the experimental results. Experiments also validate
the high-Oh and low-Oh limits of Eq. (1), respectively, given
by Re−1t−1=2e ∝ t3=2e ⇒ te∝Re−1=2 and Re−2Oh−2 ∝ t3=2e ⇒
te ∝ Re−4=3Oh−4=3. Equation (1) as well as Fig. 3(a) also
reveal that, for a fixed value of Oh, there is a crossover
Reynolds number, Rec, above which te is mostly determined
by the viscous deceleration of the sheet edge, te ∝ Re−1=2,
and below which it is dominated by the capillary decel-
eration, te ∝ Re−4=3Oh−4=3. The value of Rec comes
from equating these two limits, Re−1=2c ∝ Re−4=3c Oh−4=3 ⇒
Rec ∝ Oh−8=5. In addition, Fig. 3(b) reveals that, vt ∝ t−1=2e

and ht ∝ t3=2e , providing further support to our theory.
Now, following the ideas in [4,15], we have calculated

the capillary number Ca� defined using the value of Vt at
the splash transition. In Duez et al. [4], Ca� is constant
for the case of wetting surfaces and low viscosity liquids
because, in their case, the splash and dewetting transi-
tions coincide. However, we show in the Supplemental
Material [18] that, since dewetting is a necessary but not
sufficient condition for drop splashing in our case [see
Figs. 1(i)–1(j)], (i) Ca� varies appreciably with the liquid
properties and (ii) Ca� is larger than the critical capillary
number Ca�d above which the liquid dewets the substrate.
Indeed, the type of lubrication equations in [34] represent-
ing a static force balance in the direction tangent to the wall,
are integrated to determine Ca�d (see the Supplemental

Material [18] for details) and the result, particularized for
μ ¼ 5 cP, reveals that Ca� is well above Ca�d.
Thus, to determine the critical speed of an impacting

drop, we note first that splashing occurs as a consequence
of the vertical lift force l, imparted by the gas on the
edge of the liquid sheet. The lift force results from the
addition of two contributions: the lubrication force
∼KlμgVt and the suction force ∼KuρgV2

t Ht. The former
is exerted at the wedge formed between the substrate and
the edge of the lamella, and the latter, at the top part of it
[see Fig. 4(a)]. In the Supplemental Material [18] we show
that Kl≃−½6=tan2ðαÞ�½lnð19.2λ=HtÞ− lnð1þ19.2λ=HtÞ�,
with λ the mean free path of gas molecules, α the wedge
angle which, for the case of partially wetting solids
considered here does not seem to significatively depend
on liquid viscosity [35], and Ku ≃ 0.3. Since the local gas
Reynolds number based on Ht and Vt is ∼Oð10Þ, both the
viscous and inertial contributions to the lift force need to be
taken into account (see the Supplemental Material [18] for
details). Therefore, the vertical force balance per unit
length, when applied at the edge of the lamella, reads
ρH2

t
_Vv ∼ l with Vv the vertical velocity, whose character-

istic value at the instant when the liquid front has raised a
distance ∼Ht above the substrate is given by

(a)

(b)

FIG. 3 (color online). (a) Comparison between the experimen-
tally measured value of the ejection time, and the one calculated
solving Eq. (1). Each of the solid lines represents the different
theoretical results for different Ohnesorge numbers. The values
of 1000 × Oh, are represented in the legend. The experimentally
determined ejection time is very well approximated by the
solution of Eq. (1) and clearly follow the low and high Ohnesorge
number limits of this equation deduced in the main text.
(b) The measured experimental data follow our predictions for
both vt and ht.
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Vv ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ðρHtÞ

p
where l ¼ KlμgVt þ KuρgV2

t Ht:

ð2Þ

For the edge of the sheet not to contact the solid again
[see Figs. 1(i)–1(j)], Vv needs to be larger than _Rc. Here, Rc
is the rim radius of curvature which, once the liquid dewets
the substrate, grows in time as a consequence of capillary
retraction. Naming Vr the well-known Taylor-Culick
velocity given by the momentum balance 2σ ¼ ρV2

rHt,

Vr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ=ρHt

p
; ð3Þ

and inserting this result into the mass balance dR2
c=

dT ∼ VrHt, one readily obtains that, at the instant when

the liquid separates from the substrate, for which
Rc ≃Ht=2, _Rc ∼ Vr. Hence, the splash threshold condition
reads β ¼ Vv=Vr ∝ ðl=σÞ1=2 ∼Oð1Þ, with Vv and Vr,
respectively, given in Eqs. (2)–(3). Using the expression
for the lift force l in Eq. (2), the splash condition can thus
be expressed as

β ¼
�
KlμgVt þ KuρgV2

t Ht

σ

�
1=2

∼Oð1Þ: ð4Þ

To check the validity of Eq. (4), Eq. (1) is used first to
calculate the ejection time te;crit corresponding to the values
of We, Re, ρ=ρg, and μ=μg for which the splash transition
is experimentally observed. Once te;crit is known, Vt ¼ffiffiffi
3

p
=2Vt−1=2e;crit , Ht ¼ 2.8R

ffiffiffiffiffi
12

p
=πt3=2e;crit and β is determined

through Eq. (4). Figure 4(b) demonstrates that the splash
threshold is characterized by a nearly constant value of β,
independent of the type of liquid considered, as predicted
by Eq. (4). The open symbols in Fig. 4(c), representing the
splash threshold velocities calculated solving Eq.s (1)
and (4) for β≃ 0.14, are fairly close to those measured
experimentally, a fact further supporting our theory.
Interestingly enough, the inset in Fig. 4(b) shows that
the splash threshold corresponding to all the experimental
data in Xu et al. [1], where the critical speed of drops of
different liquids falling within several gases and different
pressures is investigated, is also characterized by β≃ 0.14.
Since the lift force l is dominated by the contribution

coming from the overpressures in the wedge, l ∼ KlμgVt

(see the Supplemental Material [18] for details) and
Kl is approximately constant because of its logarithmic
dependence on the physical parameters, the splash
criterion (4) at normal atmospheric conditions can be
approximated by ðμgV=σÞt−1=2e;crit ∝ C, with te;crit the sol-
ution of Eq. (1) and C a constant. Because of the fact
that te;crit ∝ Re−4=3Oh−4=3 [see Fig. 3(a)] in the low-
Oh limit, the previous approximate criterion results
in OhgOh5=3Re5=3 ≡ ðRe Oh8=5g Þ5=3ðμ=μgÞ5=3 ∝ C0, where
Ohg ¼ μg=

ffiffiffiffiffiffiffiffiffi
ρRσ

p
. In the high-Oh limit, te;crit ∝ Re−1=2

[see Fig. 3(a)] and, in this case, the approximate splash
criterion is OhgOhRe5=4 ≡ ðRe Oh8=5g Þ5=4ðμ=μgÞ ∝ C00.
These power law expressions are experimentally validated
in the Supplemental Material [18], giving a physical
explanation to the well-known correlation by Mundo et al.
[5,14,15] and to the interesting finding in [36] that the
splash threshold condition cannot be solely characterized
in terms of Oh and Re. Let us emphasize that these power
law expressions are simply approximations to our theory,
expressed by Eqs. (1) and (4).
To conclude, we have deduced a criterion expressing the

splash threshold velocity of a drop impacting on a smooth,
dry surface as a function of the liquid density and viscosity,
the millimetric drop radius, the gas density and viscosity,

(a)

(b)

(c)

FIG. 4 (color online). (a) The total lift force arises as the
addition of the force in the wedge of angle α and the force at the
top part of the lamella. The plus (minus) signs indicate the regions
where the gauge pressure is positive (negative). (b) Values of the
function β calculated through Eq. (4) for the different liquids and
drop diameters investigated. Experimental data from [14] have
also been included. The inset shows that the splash threshold
velocity V corresponding to the experiments in Xu, Zhang, and
Nagel [1] (black symbols, with the same meaning as in this
reference) is also characterized by β≃ 0.14. Our own data, as
well as those in [14] are also included in the inset. (c) The open
symbols represent the splash threshold velocities predicted by the
solution of Eqs. (1) and (4) with β≃ 0.14, while the experimental
data points are represented using solid symbols.
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the interfacial tension coefficient, and the nanometric mean
free path of gas molecules.
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