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The azimuthal version of the magnetorotational instability (MRI) is a nonaxisymmetric instability of a
hydrodynamically stable differentially rotating flow under the influence of a purely or predominantly
azimuthal magnetic field. It may be of considerable importance for destabilizing accretion disks, and plays
a central role in the concept of the MRI dynamo. We report the results of a liquid metal Taylor-Couette
experiment that shows the occurrence of an azimuthal MRI in the expected range of Hartmann numbers.
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The magnetorotational instability (MRI) is widely
accepted as the main source of turbulence and angular
momentum transport in accretion disks around protostars
and black holes. Although discovered by Velikhov [1] as
early as 1959, its relevance for the evolution of stellar
systems, x-ray binaries, and active galactic nuclei was only
recognized by Balbus and Hawley in 1991 [2]. While most
of the early MRI studies had considered a uniform axial
magnetic field threading the flow (nonzero net flux), recent
focus [3] has shifted slightly to the case of azimuthal fields
(zero net flux). One reason for this lies in the interesting
concept of a subcritical MRI dynamo, in which the MRI-
triggering field is partly sustained by the MRI-driven
turbulence itself [4]. Another possible application is related
to the high values of “artificial viscosity” that are needed to
explain the slowing down of stellar cores after the collapse
towards their red giant stage [5].
In magnetohydrodynamic stability problems of this kind,

the magnetic Prandtl number, Pm, the ratio of the fluid’s
kinematic viscosity to its magnetic diffusivity, can play a
crucial role. For Pm ≥ 1 both nonzero and zero net
flux versions of the MRI operate very effectively and
robustly, whereas for Pm ≪ 1 both are far more delicate,
involving not only numerical convergence issues, but also
real physical effects such as the role of stratification or
boundary conditions [6].
The discovery of the helical MRI (HMRI) by Hollerbach

and Rüdiger in 2005 [7] spurred additional interest in the
small Pm limit. For an appropriate combination of axial and
azimuthal magnetic fields, the HMRI was shown to work
even in the inductionless limit Pm → 0, since it depends
only on the Reynolds number, Re, and the Hartmann
number, Ha. This is in contrast with the standard MRI

(SMRI) which requires both the magnetic Reynolds number
Rm ¼ PmRe and the Lundquist numberS ¼ Pm1=2Ha to be
at least Oð1Þ, and is correspondingly difficult to observe in
the laboratory [8].
It is of interest also to consider the possibility of a

(nonaxisymmetric) MRI operating in a purely azimuthal
field [9], a configuration that has come to be known as the
azimuthal MRI (AMRI) [10]. It was initially believed that
the AMRI operates only in the same ðRm; SÞ > Oð1Þ
parameter regime as the SMRI, and would be experimen-
tally unobtainable. However, in 2010 it was discovered that
for sufficiently steep rotation profiles the AMRI switches
to the same inductionless ðRe;HaÞ parameter values as the
HMRI [11]. It is this inductionless version of the AMRI
that will be explored in this Letter.
The question of which parameters, ðRm; SÞ or

ðRe;HaÞ, are the relevant ones, and how that might vary
depending on the steepness of the rotation profile, is
also of potential astrophysical significance, since the
Keplerian profile ΩðrÞ ∝ r−3=2 that is of greatest interest
in accretion disks is considerably shallower than the
limiting Rayleigh value ΩðrÞ ∝ r−2. For the azimuthal
field profile Bϕ ∝ r−1 both the HMRI as well as the
AMRI have switched from ðRe;HaÞ back to ðRm; SÞ for
rotation profiles as shallow as Keplerian, as was first
noted for the HMRI by Liu et al. [12] and generalized
to higher m modes by Kirillov et al. [13]. However,
if the field profiles are taken only slightly shallower
than Bϕ ∝ r−1, both the HMRI and the AMRI have
recently been shown [14] to scale with ðRe;HaÞ even for
Keplerian rotation profiles. The astrophysical importance
of these ðRm; SÞ versus ðRe;HaÞ scaling laws thus conti-
nues to be an open question.
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In order to study this nonaxisymmetric AMRI, we utilize
a slightly modified version of the PROMISE facility which
has previously been used for investigations of the HMRI
[15]. The main part of PROMISE is a cylindrical vessel
(Fig. 1) made of two concentric copper cylinders enclosing
a cylindrical volume of width d ¼ rout − rin ¼ 40 mm,
between the radii rin ¼ 40 mm and rout ¼ 80 mm, and a
height of 400 mm. This cylindrical volume is filled
with the liquid eutectic alloy Ga67In20.5Sn12.5 for which
Pm ¼ 1.4 × 10−6. Both the upper and lower end caps of
the cylindrical volume are formed by two plastic rings,
separated at r ¼ 56 mm, the inner and outer ring rotating
with the inner and outer cylinders, respectively.
The magnetic field configuration is basically identical

to that of the previous PROMISE experiments, apart from
a significant enhancement of the power supply that now
allows for currents in the central copper rod of up to
20 kA. This value is approximately double the expected
critical value for the onset of AMRI [3,11]. The central
rod can become quite hot, and was therefore thermally
insulated by a vacuum tube to prevent any convection
effects in the fluid. This vertical copper rod is connected
to the power source by two horizontal rods at a height
of 0.8 m below the bottom and above the top of the
cylindrical volume. The slight deviation from a purely
axisymmetric BϕðrÞ that arises from this asymmetric
wiring will play an important role below. We further
mention that the coil for the production of the axial field

Bz was left in place, although it was not used for the
particular experiments reported in this Letter. In any case,
there is no electrical current applied to the liquid metal,
in contrast to previous experiments on the pinch-type
Tayler instability [16].
With Bz being set to zero, the AMRI is completely

governed by only three nondimensional parameters, the
Reynolds number Re ≔ Ωindrin=ν, the ratio of outer to
inner angular frequencies μ ≔ Ωout=Ωin, and the Hartmann
number characterizing the azimuthal magnetic field:
Ha ≔ BϕðrinÞðrindσ=ρνÞ1=2. For converting between dimen-
sional and nondimensional quantities we can use the follow-
ing relations: Re ¼ 4710Ωin=s−1 and Ha ¼ 7.77 Irod=kA.
The measuring instrumentation consists of two ultra-

sonic Doppler velocimetry (UDV) transducers (from Signal
Processing SA) working at a frequency around 3.5 MHz,
which are fixed into the outer plastic ring, 12 mm away
from the outer copper wall, and flush mounted at the
interface to the GaInSn. The signals from these sensors are
transferred from the rotating frame of the outer cylinder to
the laboratory frame by means of a slip ring contact which
is situated below the vessel (not shown in Fig. 1). The UDV
provides profiles of the axial velocity vz along the beam
lines parallel to the axis of rotation. The spatial resolution
in the axial direction is around 1 mm; the time resolution
is 2 sec.
From previous work [3,11] we anticipate that the AMRI

starts at Ha≃ 80 and manifests itself as a nonaxisymmetric
(m ¼ �1) spiral velocity structure that rotates around the
vertical axis with an angular frequency close to that of
the outer cylinder. This m ¼ �1 mode can be identified
by taking the difference of the signals of the two UDV
transducers, although the observed frequency in the coro-
tating frame of the sensors will be rather small. Among
other numerical tools [3], we have used the OpenFOAM
library, enhanced by a Poisson solver for the determination
of the induced electric potential (see Ref. [17] for details),
in order to simulate the AMRI for the true geometry of the
facility and the real Pm of GaInSn. The velocity structure
simulated in this way can then be transformed to the
corotating frame in order to compare the resulting velocity
pattern with the experimentally observed one.
This is done in Figs. 2 and 3, for μ ¼ 0.26, Re ¼ 1480,

and Ha ¼ 77, and Ha ¼ 110, respectively. For the idealized
case of a perfectly axisymmetric BϕðrÞ, Fig. 2(a) illustrates
the simulated m ¼ �1 projection of the axial velocity
perturbation vzðz; tÞ in dependence on time t and vertical
position z, when virtually transformed to the corotating
frame of the UDV sensors. The resulting “butterfly” pattern
represents a spiral, rotating slightly faster than the outer
cylinder, whose energy is concentrated approximately in
the middle parts of the upper and lower halves of the
cylinder. In Fig. 2(b) we show the simulation for the real
geometry of the applied magnetic field, including its slight
symmetry breaking due to the one-sided wiring (the

FIG. 1 (color). Sketch of the experimental setup.
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deviation is about 5 percent at the inner radius, and 10
percent at the outer radius). The effect is remarkable: the
formerly clearly separated spiral structures now also fill
the middle part of the cylinder and penetrate into the other
halves (a comparable effect in which individual left- and
right-spiral waves are replaced by interpenetrating spirals
has been investigated in connection with the double
Hopf bifurcation in a corotating spiral Poiseuille flow [18]).
The corresponding velocity pattern observed in the experi-
ment is shown in Fig. 2(c); the similarity to the realistic
simulation in Fig. 2(b) is striking. Note that in both
Figs. 2(b) and 2(c) we have filtered out those components
of the m ¼ �1 modes that are stationary in the laboratory
frame, since they are a direct consequence of the external
symmetry breaking, without any relation to the AMRI
mode as such.
The same procedure is documented for Ha ¼ 110 in

Fig. 3. Again, Fig. 3(a) shows the numerically computed
pattern for the perfectly axisymmetric case. The “butterfly
diagram” has now changed its direction, meaning that the
spiral rotates slightly slower than the outer cylinder. The
more realistic simulation in Fig. 3(b) shows the interpen-
etration of the spirals of the upper and lower halves of
the cylinder, which is also qualitatively confirmed by the
experimental data in Fig. 3(c).
By analyzing a total of 102 experimental runs similar to

those documented in Figs. 2(c) and 3(c), we have extracted
the dependence of various quantities on Ha. For μ ¼ 0.26

and Re ¼ 1480, Fig. 4(a) shows the theoretical growth rate
of the AMRI as determined by a 1D-eigenvalue solver for
the infinite length system [3]. In Fig. 4(b) we show then the
mean square value of the UDV-measured velocity pertur-
bation vz ðm ¼ 1; z; tÞ and compare them with the numeri-
cally determined ones for the idealized axisymmetric and
the realistic applied magnetic fields. Whereas the growth
rate in Fig. 4(a) and the numerical rms results under the
axisymmetric field condition give a consistent picture with
a sharp onset of AMRI at Ha≃ 80 [3,11], the slight
symmetry breaking of the field leads, first, to some
smearing out of the rms for lower Ha and, second, to a
significant increase of the rms velocity value, with a
reasonable correspondence of numerical and experimental
values. The remaining deviation of the rms value might
have to do with the smoothing and filtering processes that
are necessary due to the high noise level of the raw data
from the UDV (which is indeed at the edge of applicability
here), as well as with some compromises made in the
numerical simulation, in particular with respect to the
complicated electrical boundary conditions.
The dependence of the numerically and experimentally

determined normalized drift frequency on Ha is shown in
Fig. 4(c). AMRI represents an m ¼ �1 spiral pattern that
rotates approximately with the rotation rate of the outer
cylinder [3]. There is still some deviation from perfect
corotation, with a slightly enhanced frequency for lower
Ha and a slightly reduced frequency for higher Ha, which
can be identified both in the linear theory and in the
experimental data. The corresponding wave numbers are
presented in Fig. 4(d).

FIG. 2 (color). Velocity perturbation vzðm ¼ 1; z; tÞ for
μ ¼ 0.26, Re ¼ 1480, and Ha ¼ 77. (a) 3D simulation for
ideal axisymmetric field. (b) 3D simulation for realistic field.
(c) Experimental results.

FIG. 3 (color). As in Fig. 2, but for Ha ¼ 110.
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For a doubled rotation rate, i.e., Re ¼ 2960, Fig. 5 shows
the same quantities as in Fig. 4, except with the numerical
predictions restricted to those of the 1D eigenvalue solver,
since 3D simulations already become extremely expensive
in this case. Still, the qualitative behavior of the rms and
the frequency agrees well with that at the lower rotation
rates (Fig. 4).
In summary, we have shown that AMRI occurs in a

hydrodynamically stable differential rotational flow of a
liquid metal when it is exposed to a dominantly azimuthal
magnetic field. The critical Hartmann number for the
onset of AMRI is close to the numerically predicted value
of approximately 80. The dependence of the rms, the drift
frequency, and the axial wave number of the nonaxisym-
metric velocity perturbations on Ha turned out to be in good
agreement with numerical predictions, especially if the
latter incorporate the surprisingly strong effect of the slight

symmetry breaking of the externally applied magnetic field.
This underlines the importance of 3D codes, working at
realistic Pm, for a detailed understanding of experimental
results. Presently, experimental and numerical work is
going on to scrutinize the dependence of the AMRI on
the ratio μ of outer to inner cylinder rotation rates. The
main focus here is on whether the (modified) AMRI could
possibly extend to rotation profiles as flat as the
Keplerian one.
Significantly more experimental effort is needed to study

the influence of an additionally applied Bz, which breaks
the symmetry between the m ¼ 1 and m ¼ −1 modes [11].
When increasing Bz even further [at Bz ≃ 0.05BϕðrinÞ,
see Fig. 3 of Ref. [11] ], we should also be able to observe
the transition from the m ¼ �1 AMRI mode back to the
previous m ¼ 0 HMRI mode which can be identified in
the sum of the signals of the two UDV transducers [15].
A more ambitious project, planned within the framework
of the DRESDYN project [19], will comprise a large
liquid sodium experiment for the combined investigation
of SMRI, HMRI, AMRI, and the current-driven Tayler
instability [16].

This work was supported by the Helmholtz-
Gemeinschaft Deutscher Forschungszentren (HGF) in the
framework of the Helmholtz Alliance LIMTECH, as well
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FIG. 4. Results for Re ¼ 1480. (a) Growth rate from a 1D linear
stability code, (b) mean square velocity perturbation from experi-
ment and two different 3D simulations for idealized and real
magnetic field geometry, (c) angular drift frequency, and (d) wave
number from experiment, from the 1D linear stability code, and
from the 3D simulation with real field geometry. The error bar of
the velocity perturbation corresponds to an 85 percent confidence
level. The “up” and “down” values in (c) and (d), which refer to
the travel direction of the velocity perturbations as exemplified in
Figs. 2 and 3, are determined by a center-of-gravity method
applied to the 2D FFT of the data.
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