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Ultracold gases excited to strongly interacting Rydberg states are a promising system for quantum
simulations of many-body systems. For off-resonant excitation of such systems in the dissipative regime,
highly correlated many-body states exhibiting, among other characteristics, intermittency and multimodal
counting distributions are expected to be created. Here we report on the realization of a dissipative gas of
rubidium Rydberg atoms and on the measurement of its full counting statistics and phase diagram for both
resonant and off-resonant excitation. We find strongly bimodal counting distributions in the off-resonant
regime that are compatible with intermittency due to the coexistence of dynamical phases. Our results pave
the way towards detailed studies of many-body effects in Rydberg gases.
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Ultracold atoms excited to high-lying Rydberg states [1]
have been shown in recent years to be promising candidates
for experimental implementations of quantum computation
and quantum simulation [2–4]. The strong and controllable
interactions between Rydberg atoms mean that fast two-
qubit quantum gates and models of many-body
Hamiltonians can, in principle, be efficiently realized. As
a further important ingredient, dissipation has been shown
to lead to novel phases [5–8] and to facilitate, under certain
conditions, the creation of pure and coherent many-body
states [9–11] and quantum simulations [2,3].
Thus far, Rydberg excitations in cold gases have been

studied almost exclusively in the resonant, nondissipative
regime. In those experiments the strong interactions
between Rydberg atoms manifest themselves either as
spatial correlations [12,13] or through a reduction of
fluctuations [14]. In this Letter we show that for off-
resonant excitation the behavior of the system depends
strongly on the detuning and the sign of the interaction. We
characterize our system through the full counting statistics
of the excitation events, similarly to the methods recently
used in condensed matter physics to unveil correlations in
electronic transport processes [15,16]. In the dissipative
regime, we observe strongly bimodal counting distributions
[5,7,8], indicating intermittency and/or phase coexistence,
as predicted in [5,7], or bistability, as observed in [17].
Our experiments are performed using 87-rubidium atoms

in magneto-optical traps that are excited to 70S Rydberg
states using a two-photon excitation process with detuning
Δ from resonance and two-photon Rabi frequencies of up
to 400 kHz (see Ref. [14] for details). The first step laser at
420 nm is detuned by 2 GHz from the intermediate 6P state
to ensure that the latter is not populated on the time scale of
the experiment. The second step laser at 1013 nm is focused

to a waist of 80 μm, and the waist of the first step laser can
be varied between 6 and 40 μm, allowing us to change the
overlap between the atomic clouds of size ≈30–100 μm
[with peak densities around ð0.9–5Þ × 1011 cm−3] and the
excitation lasers, and hence the effective excitation volume,
which ranges from ≈10−7 to ≈5 × 10−6 cm3. The smallest
waist of the first step laser is then smaller than the blockade
radius and hence the excitation geometry is quasi-one-
dimensional. After the excitation pulse, during which the
magneto-optical trap laser beams are switched off, the
Rydberg atoms are field ionized and detected using a
channeltron charge multiplier, whose output is recorded on
an oscilloscope [see Fig. 1(a)]. The full counting distribu-
tions were obtained by performing 500 repetitions of the
experiment. The overall Rydberg detection efficiency η ≈
40% was taken into account in calculating the observed
counting distributions ðPðxÞÞobs for the number x of
Rydberg excitations and their central moments from the
actual distributions PðxÞ (see Supplemental Material [18]
and definitions below), extending the treatment of [19] to
higher moments.
Figures 1(b)–1(d) illustrate the different excitation

regimes. Away from resonance [Fig. 1(d)], two atoms at
a distance r from each other can undergo a pair excitation if
C6=r6 ¼ 2ℏΔ, where C6 is the van der Waals coefficient.
For the 70S Rydberg state in 87-Rb, C6¼h×1.2THzμm6,
so r ¼ 6.26� 0.1 μm for a typical detuning of 10 MHz
(the range in r is due to the finite laser linewidth of about
0.5 MHz). This resonant condition is the opposite of the
blockade effect [Fig. 1(c)] [20], where the interaction
suppresses excitations, allowing at most one single
(collective) excitation within a blockade radius. The time
scale for off-resonant pair excitations can be estimated from
the two-photon Rabi frequency Ωoff ¼ Ω2=ð2ΔÞ. In our
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experiment,Ω ≈ 2π × 200 kHz, so forΔ=2π ¼ 2 MHz, we
have Ωoff ≈ 2π × 10 kHz, which is much smaller than the
collective Rabi frequency Ωcoll ≈ 2π × 1.4 MHz (for a
number Ndb ≈ 50 of atoms inside a blockade volume
[1,21]). Also, excitations of atoms at a distance rc from
an already excited atom satisfying C6=r6c ¼ ℏΔ are pos-
sible. Finally, for a detuning with opposite sign, neither
single-particle nor pair excitations are resonant, leading to
an overall suppression of the excitation probability
[Fig. 1(b)].
Figure 1(e) shows the mean number of Rydberg exci-

tations as a function of detuning for two different excitation
durations. For the 1 μs pulse off-resonant pair excitations
are negligible and, hence, the line shape is symmetric. For a
20 μs pulse, however, the excitation time approaches
2π=Ωoff ≈ 100 μs, and off-resonant excitations become
visible, resulting in an asymmetric line shape (on these
time scales, excitations mediated by already excited atoms
are also likely to occur and may dominate the dynamics in
our experiments). Further evidence for the different exci-
tation regimes is found in the histograms of the counting
distributions [Figs. 1(f)–1(h)]. On resonance, the distribu-
tion is roughly Poissonian [it becomes sub-Poissonian in
the fully blockaded regime, as seen in Fig. 3(b)], whereas
for positive detuning it becomes multimodal. For negative

detuning, the histogram confirms the expected strong
suppression of excitations.
We now turn to the dissipative off-resonant excitation

regime, in which several excitation-spontaneous emission
cycles occur during the excitation pulse (in this regime
thermal motion and the forces between excited atoms can
lead to a motion of the atoms of several tens of microns).
Even though our experimental system does not allow us to
work in the fully coherent regime (due to limitations in the
laser linewidth and power), the 20 μs excitation duration in
Fig. 1 is an order of magnitude shorter than the lifetime of
the 70S Rydberg state of around 200 μs. Comparing the
counting distributions for different durations (Fig. 2), in
which the Rabi frequency was adjusted in order to keep the
mean value constant, we find that the bimodality increases
for longer times, suggesting that dissipation favors bimo-
dality (as theoretically predicted in Refs. [5–7]). This is
confirmed by the increase in the bimodality parameter with
excitation duration (inset of Fig. 2).
The complete counting distribution provides more

insight into the properties of our system (as in, e.g.,
Ref. [22] for the phase transition of a spin-1 Ising model).
We have characterized the full counting statistics of PðxÞ
over a range of Rabi frequencies (see Fig. 3) by analyzing
the nth order central moments μn ¼ hðx − x̄Þni up to n ¼ 4
as well as their associated normalized quantities Mandel Q
factor Q ¼ μ2=x̄ − 1, skewness γ ¼ μ3=μ

3=2
2 , Binder cumu-

lant B ¼ 1 − μ4=ð3μ22Þ, and bimodality coefficient b ¼
ðγ2 þ 1Þ=ðμ4=μ22Þ as a function of the mean number x̄.
We compare our experimental results to three simple
models in order to highlight the main features: a perfectly
monomodal model with mean x̄ and central moments
μ2;3;4;… ¼ 0, a Poissonian monomodal model with μ2 ¼
μ3 ¼ x̄ and μ4 ¼ x̄ð1þ 3x̄Þ, as well as a bimodal model
consisting of two modes at x1 and x2 with probabilities
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FIG. 2 (color online). Experimental results showing the cross-
over to the dissipative regime in off-resonant excitation
(Δ ¼ 11.5 MHz). As the duration of the excitation is increased
from 20 μs (dotted line) to 950 μs (solid line), the counting
distributions become more strongly bimodal. The inset shows the
bimodality parameter as a function of the excitation duration.

FIG. 1 (color online). (a) Schematic representation of the
experimental procedure. (b)–(d) Resonant and off-resonant ex-
citation processes for interacting Rydberg atoms. (vdW indicates
the energy shift due to the van-der-Waals interaction). (e) Mean
number of Rydberg excitations as a function of detuning. Here
and throughout the Letter we omit the subscript “obs” indicating
the observed quantities. The excitation durations are 1 μs (gray
symbols, right-hand vertical axis) and 20 μs (black symbols, left-
hand vertical axis). (f)–(h) Histograms of the counting distribu-
tions in the resonant and off-resonant regimes. The detunings are
Δ=2π ¼ −3.5 MHz (f), Δ=2π ¼ 0 (g), and Δ=2π ¼ þ3.5 MHz
(h). The dashed vertical lines indicate the mean number of
excitations. The Rabi frequency is 2π × 400 kHz, the interaction
volume 10−7 cm3, and the density 1.8 × 1011 cm−3.
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1 − α and α, for which x̄ ¼ ð1 − αÞx1 þ αx2
and μn ¼ ð1 − αÞðx1 − x̄Þn þ αðx2 − x̄Þn.
Figures 3(a) and 3(b) show the off- and on-resonant

counting distributions for two mean values (the same in
both graphs), illustrating the bimodality for off-resonant
excitation and the sub-Poissonian character of the distri-
bution on resonance. This difference is clearly seen in the
dependence of μ2 and the Mandel Q factor on the mean
number: On resonance those quantities are consistent with
Poissonian distributions for small mean numbers but
become increasingly sub-Poissonian for larger numbers.
By contrast, in the off-resonant case μ2 initially increases,
reaching a peak at about half the maximum number of
excitations (the Q factor peaks at smaller mean numbers
due to its normalization), which is determined by the ratio
between the cloud volume and the volumes associated with
the blockade radius and the resonant distance, respectively.
The peak in μ2 can be interpreted as a signature of a
dynamical phase transition (see below) for which, in a two-
well phase model, μ2 (i.e., the susceptibility) has a
maximum. As can be seen in Figs. 3(c)–3(h), the results
of the off-resonant case are in qualitative agreement with a
simple bimodal model. In particular, the bimodality coef-
ficient [Fig. 3(h)] off resonance is consistently higher
(0.7–0.8) than for the resonant case (around 0.4), emphasiz-
ing the qualitative difference between the two regimes.

Whereas the agreement is excellent for μ2, it is less good for
the higher central moments, which indicates that the simple
model used here needs to be refined to explain the
behaviour of our system. Also, particularly for higher
moments the detection efficiency η (which may be a
function of the ion number itself) sensitively influences
the observed behavior.
The results shown in Fig. 3 can be interpreted in terms of

a dynamical phase transition between a paramagnetic and
an antiferromagnetic phase in a (finite-size) dissipative
Ising model with a transverse field, as shown in Refs. [5,7].
Although in those works the atoms are assumed to be
arranged in a crystalline structure, the distance-selective
resonance mechanism described above means that in our
experiment the Rydberg excitations should arrange them-
selves in a regular array [23]. In Fig. 4 we show a phase
diagram for our system. The mean Rydberg number
(analogous to the magnetization in the Ising model) as a
function of the Rabi frequency exhibits a smooth crossover
between 0 excitations and a maximum number of around
30 [see also Fig. 3(a)], with the position of the crossover
depending on the detuning. This is expected from the
analogy with an Ising spin system [24], where the critical
value of the transverse field (the Rabi frequency in our
system) increases with increasing Ising interaction (the
detuning in our case). Moreover, the distinct peak in the
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FIG. 3 (color online). (a) Off-resonant (Δ=2π ¼ 11.5 MHz) and (b) resonant counting distributions in the dissipative regime, for equal
mean numbers 6 (dashed lines) and 23 (solid lines), respectively [indicated by the arrows in the inset of (a), which shows the mean
number of excitations as a function of the Rabi frequency]. The dotted red lines are the results of the bimodal model in (a) and the
perfectly monomodal model in (b), whereas the solid light gray lines show the distributions expected for Poissonian distribution with the
same mean values. (c)–(e) The second, third, and fourth central moments of the off-resonant (blue) and on-resonant (gray) counting
distributions. Panels (f)–(h) show the associated normalized quantities (see text). The lines in (c)–(h) are the results of the simple
bimodal (dashed, with x1 ¼ 1 and x2 ¼ 65), Poissonian monomodal (dotted), and perfectly monomodal (dot-dashed) models. The
detection efficiency of 40% was taken into account. For the bimodal model, the theoretical values were scaled by a factor of ≈0.5 in
order to facilitate a qualitative comparison with the experimental data. The interaction volume is 3.6 × 10−6 cm3, the density
1 × 1011 cm−3, and the excitation duration 950 μs.
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MandelQ factor (and hence in μ2, which corresponds to the
susceptibility) in the transition region is compatible with
the predicted intermittent behavior of the system [5,7] (as
evidenced by the bimodal counting distributions in that
region) due to the coexistence of active and inactive phases.
In order to prove that interpretation directly, however, it will
be necessary to observe the time evolution of a single
experimental realization, e.g., through the observation of
photons emitted during the decay process [17]. In principle,
the full counting statistics obtained in our experiments
allows us to determine the critical exponents of the phase
transition, e.g., by changing the system size and looking for
data collapse of the Binder cumulant [25].
Finally, we present the results of a numerical simulation

[Figs. 2(a)–2(d)] based on an extension of the Dicke model
applied to Rydberg excitations [14,26] (see the
Supplemental Material [18]) that is valid at interaction
times shorter than those corresponding to the atomic
decoherence mechanisms and reproduces the main features
observed in the experiment. Briefly, the original Dicke
model was modified by including the van der Waals
interactions between the collective Dicke states (taking
into account the R−3 contribution at short distances for S
states) that contain the full statistical information about the
collective Rydberg excitation. The laser acting on the cold
atoms initially produces a number of Rydberg excitations
through a coherent mechanism as for a gas of noninteract-
ing particles. When this number reaches an upper limit [see
Fig. 5(e)], the interactions in the systems cause the
excitations to be transferred towards an incoherent mixture
of states, which results in a sum of a coherent superposition
of quantum states (pure density matrix) and an incoherent
mixture of occupation probabilities (impure density

matrix). This peculiar quantum state is, to the best of
our knowledge, an original result of our investigation. The
projective quantummeasurement of the number of Rydberg
excitations, finally, leads to the bimodal counting distribu-
tions. Whereas the model is not expected to give quanti-
tative agreement with the experiment (as it does not, for
instance, take into account the spatial inhomogeneity of the
cloud, the residual velocity of the atoms, or decay from the
Rydberg state), for reasonable choices of the parameters in
the simulation the qualitative agreement of Figs. 5(a)–5(d)
with the experimental data of Fig. 1 is good.
In conclusion, we have analyzed resonant and off-

resonant Rydberg excitations in a cold rubidium gas in
the dissipative regime through full counting statistics. We
have shown that the full counting statistics reveals char-
acteristic features of the system that are not evident in the
mean or standard deviation typically measured in such
experiments. Our technique should be useful for the
characterization of Rydberg excitations in optical lattices
[27] in which, e.g., the Ising model can be realized, and in
experiments with chirped excitation lasers aimed at the
adiabatic creation of Rydberg crystals [28–30]. More
generally, the full counting statistics will be an important

FIG. 4 (color online). Phase diagram in the dissipative regime.
Panel (a) shows the mean number of Rydberg excitations and
(b) the Mandel Q factor as a function of Rabi frequency and
detuning. In (a) and (b) the red dashed lines indicate the transition
toQ > 1 andQ > 7. The interaction volume is 3 × 10−7 cm3 and
the density 1.6 × 1011 cm−3.
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FIG. 5 (color online). (a)–(c) Numerical simulations of the
counting distributions for Δ=2π ¼ −5; 0; 5 MHz, respectively.
The finite detection efficiency is taken into account through a
convolution with a binomial function. In (d) the mean values are
plotted as a function of detuning. Comparison with a Lorentzian
fit (dashed line) centered at Δ ¼ 0 highlights the asymmetry of
the line shape (simulation parameters: Rabi frequency 130 kHz,
excitation duration 4 μs, density 9 × 1010 cm−3, and interaction
volume 8.9 × 10−8 cm3). (e) Energy levels in the Dicke model of
Rydberg excitations (for Δ > 0). The laser excitation is blocked
at the state NRyd within a dark state superposition unbalanced
towards the ground state (schematically represented here for the
case NRyd ¼ 6). In the mean-field approximation, the resonance
condition W

ðNRyd=2Þþ1
ss −W

ðNRyd=2Þ−1
ss ¼ ℏΔ leads to several multi-

photon resonances between the intermediate Dicke states. Those
excitations produce multilambda-level configurations within the
0 → NRyd ladder.
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tool for unveiling many-body effects in Rydberg excita-
tions [31].
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