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The precise measurement of transition frequencies in cold, trapped molecules has applications in
fundamental physics, and extremely high accuracies are desirable. We determine suitable candidates by
considering the simplest molecules with a single electron, for which the external-field shift corrections can
be calculated theoretically with high precision. Our calculations show that H2

þ exhibits particular
transitions whose fractional systematic uncertainties may be reduced to 5 × 10−17 at room temperature. We
also generalize the method of composite frequencies, introducing tailored linear combinations of individual
transition frequencies that are free of the major systematic shifts, independent of the strength of the external
perturbing fields. By applying this technique, the uncertainty of the composite frequency is reduced
compared to what is achievable with a single transition, e.g., to the 10−18 range for HDþ. Thus, these
molecules are of metrological relevance for future studies.
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Frequency metrology of cold trapped molecules is an
emerging field, driven by the promise of opening up new
opportunities in fundamental physics. It has been proposed
to use these systems to test the constancy of fundamental
mass ratios (me=mp, mp=md), by measuring vibrational
transition frequencies over time [1]. The comparison of
experimental molecular transition frequencies with theo-
retical results can test ab initio calculations, in particular
QED effects [2,3], can determine mass ratios of small
nuclei, and can set limits to a “fifth force” on the
subnanometer scale [4]. The search for parity and
Lorentz invariance violation effects on vibrational frequen-
cies also requires extreme frequency accuracy [5,6].
Different molecular systems are therefore being investi-
gated [7–10].
Tests of the constancy of me=mp using microwave cold

atom clocks (exhibiting 2 × 10−16 fractional uncertainty)
are already producing stringent limits. For molecules to
become competitive systems, they must reach an uncer-
tainty in the 10−17 range. A crucial aspect in molecular
frequency metrology is thus the understanding of system-
atic frequency shifts of their transitions, the development
of methods allowing their suppression or, at least, their
quantification, and the identification of candidate systems
[11–16].
In this Letter, we discuss and answer affirmatively the

question whether it is in principle possible to reach
extremely low inaccuracies (10−18 range). We propose
the simplest molecules, i.e., molecules with one electron,
for which the ab initio theory has made significant
advances in the last decade [17]. It allows the calculation
of transition frequencies with fractional inaccuracies of,
currently, 4 × 10−11 [18], and, crucially, also the accurate

calculation of their sensitivity to external perturbing
fields [19].
The composite frequency method and simple mole-

cules.—A significant difference between atoms and mol-
ecules is that molecules have a multitude (many tens) of
long-lived rovibrational levels in their electronic ground
state, each of which may have a substantial number of
hyperfine states. Thus, there is also a very large number
(thousands) of transitions having high spectroscopic quality
factors. Their external-field shift coefficients Δηj vary,
often substantially, because the states’ rovibrational
molecular wave functions vary, and in consequence the
coefficients of the hyperfine Hamiltonian also vary. A
subset of these transitions may exhibit particularly small
Δηj. The computability of the external-field shifts of simple
molecules then has two main consequences. First, it permits
selecting from the large set of transitions the metrologically
most advantageous ones based entirely on theory. Second,
the computability also enables a new approach for a
reduction of the systematic shifts, which is particularly
direct in molecules. Here, one performs, in fairly rapid
succession, measurements of a set of N selected transitions
with frequencies ff1; f2;…; fNg under time-independent
and moderate, but otherwise arbitrary, external perturba-
tions fXjg, and numerically combines the results with
predetermined weights βi to a composite transition fre-
quency fc ¼

P
N
i¼1 βifi. For the studies mentioned above,

such a composite frequency is as useful an observable as
the frequency fi of an individual transition.
Consider now that each individual frequency fi is

perturbed by the external fields present (magnetic field,
electric field, electric field gradients, temperature, laser
intensities, etc.) in a way expressible as a power series,
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fiðfXjgÞ ¼ f0;i þ
P

jΔηj;iðXjÞnj , where f0;i are the unper-
turbed frequencies, and Δηj;i are the sensitivities to the
various external fields, precisely calculable ab initio. Only
those contributions that are relevant for a desired accuracy
of the composite frequency are included in the expansion,
and the possible occurrence of different powers nj for the
same field Xj may also be taken into account.
The weights βi are computed from the conditions that

the sensitivities of the composite frequency to the external
perturbations (up to the orders described by the above
power expansion) vanish,

∂fc=∂ðXnj
j Þ ¼

XN

i¼1

βiΔηj;i ¼ 0: ð1Þ

If M is the number of systematic effects to be canceled,
including different algebraic dependencies on the pertur-
bation strengths, there areM such equations, and one needs
to measure at least N ¼ M þ 1 transitions, possibly having
significantly different frequencies, to satisfy them. Thus,
the βi are found by solving this set of equations. We stress
that the βi are functions of the theoretical shift coefficients
Δηj;i, but are independent of the external fields.
At a simpler level, composite frequencies are determined

in atomic clocks in order to suppress the linear Zeeman
shift [20]. A composite frequency concept allowing the
cancellation of the blackbody radiation shift in atomic
clocks using atoms allowing for two clock transitions has
been proposed [21].
Here we illustrate this concept for the one-electron

molecules H2
þ and HDþ. Conceptually, we envision the

spectroscopy of these ions to be performed on a single
molecular ion, trapped in an ion trap. It is both sympa-
thetically cooled to the Lamb-Dicke confinement regime,
and interrogated by a laser-cooled atomic ion (Beþ) using
a quantum-logic-type [22] or optical-force detection [23].
Techniques of quantum-state preparation are applied
[3,24,25]. We consider here only one-photon transitions,
which avoid the relatively large light shifts associated with
the large intensities of the spectroscopy laser in two-photon
transitions [16,26]. In HDþ the one-photon transitions are
electric dipole (E1) transitions with quality factors of order
1013; in H2

þ one has to resort to electric quadrupole (E2)
transitions, since there are no allowed E1 transitions in the
ground electronic state. Such transitions have been con-
sidered theoretically (without hyperfine structure effects) in
Refs. [27–29]. Since the lifetime of all H2

þ levels exceeds
106 s, the transition quality factor will in practice be
determined by the laser line width or the interrogation
time. An E2 transition in a trapped and cooled molecular
ion has recently been observed [30].
Theoretical methods—.The main external field shifts

relevant for a trapped molecular ion are the Zeeman shift,
the Stark and electric quadrupole (EQ) shift caused by the
electric field of the ion trap, the black-body radiation

(BBR) shift, light shifts and the second-order Doppler
shift. In this work, we treat explicitly the first four shifts.
For H2

þ, Karr computed the light shifts of E2 transitions
and showed that for the fundamental transition v ¼ 0 →
v0 ¼ 1 (v; v0 are the vibrational quantum numbers) they can
be reduced to a negligible level [31]. This can also be
achieved for light shifts for E1 transitions in HDþ. The
second-order Doppler shift scales inversely with the mass
and thus will be significantly larger than in atomic ion
clocks, at the fractional level 10−16, and its uncertainty is
therefore a relevant issue. While a discussion of the
projected experimental level is beyond the scope of this
work, nevertheless a value in the 10−18 range might be
achievable.
We compute the systematic shifts using highly accurate

nonadiabatic, variational wave functions [32]. Because the
hyperfine splitting and Zeeman shift typically dominate
the other shifts, we first compute the eigenstates jmðBÞi of
the Hamiltonian Hhfs

eff ðv; LÞ þ Vmagðv; LÞ [13,33–35]. The
statesm are labeled with S, the quantum number of the total
spin, J, the total angular momentum, Jz, the projection on to
the z axis parallel to themagnetic fieldB, and, for H2

þ, I, the
quantumnumber of the total nuclear spin, or, forHDþ,F, the
quantum number of the electron-proton coupled spin. For
the Zeeman shift fZðmðBÞÞ, it is sufficient to consider the
terms of lowest-order in B, fZðmÞ≃fZ1ðmÞþfZ2ðmÞ¼
ηBðmÞBþηB2ðmÞB2 [13,15]. For each eigenstate, we then
compute the expectation value of the (EQ) and dc Stark (S)
effective interaction Hamiltonian, VEQðv; LÞ þ VSðv; LÞ,
for given strengths of the additional external fields
Xj ¼ Vzz; Et; Ez, where Et ðEzÞ is the electric field compo-
nent orthogonal (parallel) to B and Vzz ¼ −∂Ez=∂z. VEQ

and VS have been derived in [16,36] and only the results
are given here. The EQ shift is, to a good approximation,
fEQðmÞ ¼ ηVzzðmÞVzz ¼ ð3=2Þ3=2E14ðv; LÞVzzhmðBÞjL2

z−
L2=3jmðBÞi, where the quadrupole coefficients E14ðv; LÞ
have been computed in the Born-Oppenheimer approxima-
tion. The latter limits the fractional accuracy to ≃10−3.
The Stark shift is hfSðmÞ ¼ −½αðtÞðmðBÞÞðE2

x þ E2
yÞþ

αðlÞðmðBÞÞE2
z �=2, where the transverse and longitudinal static

polarizabilities are computed as αðt;lÞðmðBÞÞ ¼ αsðv; LÞþ
γðt;lÞαtðv; LÞhmðBÞjL2

z −L2=3jmðBÞi, with γðlÞ ¼ 2,
γðtÞ ¼ −1.We have computed the scalar [αsðv; LÞ] and tensor
[αtðv; LÞ] polarizabilities nonadiabatically, using the non-
relativistic variational wave functions [36]. The inaccuracies
of the polarizabilities are of order 10−4 due to the neglect of
relativistic effects (of relative order α2) [37].
The BBR shift of a transition,ΔfBB, is determined by the

dynamic scalar polarizabilities αsðωÞ of initial and final
states, in case of an isotropic and unpolarized BBR field.
The shift is to a very good approximation independent of
the hyperfine state and only depends on the initial and final
rovibrational levels ðv; LÞ, ðv0; L0Þ. Using our computed
polarizabilities and accurate transition dipoles of Ref. [38],
we computed the BBR shifts and their temperature
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derivatives for both HDþ, extending the results of
Ref. [14], and H2

þ. For the homonuclear ion H2
þ the

shift can be approximately obtained from the static
scalar polarizability αsðv; L; Þ only, ΔfBBðT0Þ≃ΔηTT4

0¼
−ð832V=mÞ2ðT0=300KÞ4Δαs=2h, where T0 is the temper-
ature of the BBR radiation field, and Δαs ¼ αsðv0; L0Þ−
αsðv; LÞ. We also computed the correction of the shifts due
to the frequency dependence of the contribution of the
excited electronic levels to the polarizability [36]. For Hþ

2

we find that the static approximation is sufficient, and thus
the fractional inaccuracy of the BBR shift coefficients is
σy;ΔηT ¼ 1 × 10−3. For HDþ, when taking into account all
dynamic effects and in the nonrelativistic approximation,
we reach a theoretical uncertainty of ΔfBBðT0Þ as low as
σabs;ΔfBB ¼ 0.03 mHz. Here, we conservatively assume
σabs;ΔfBB ¼ 0.1 mHz.
Systematic shifts of the molecular ions.—We have

performed the analysis of the systematic shifts of H2
þ

searching for metrologically advantageous transitions by
first applying the criterion of particularly small Zeeman
shifts. For experimental reasons we consider only transi-
tions originating in the vibrational ground state v ¼ 0 and
we limit the final states to those for which v0 ≤ 4. We also
note that the E2 transition strengths decrease rapidly with
increasing jv0 − vj [27] and therefore small values are
experimentally favorable. E2 transitions with small linear
Zeeman shifts are mainly those between the particular
homologous hyperfine states, ðv;L;I;S¼Iþ1=2;J;JzÞ→
ðv0;L0 ¼L;I0 ¼I;S0 ¼S;J0 ¼J;J0z¼JzÞ. Among these
are of interest transitions between states with (i) J ¼ Sþ L;
Jz ¼ �J (stretched states), (ii) L even; I ¼ 0; S ¼ 1=2;
J ¼ L − 1=2 or J ¼ Lþ 1=2, various Jz, (iii) L ¼ 3;
I ¼ 1; S ¼ 3=2; J ¼ 3=2 or J ¼ 9=2, various Jz.
Their small linear Zeeman shift coefficient ΔηB is a

result of the near cancellation of the shift coefficients ηB of
lower and upper state, which lie in the range jηBj≃ ð0.15 −
1.5Þ MHz=G [34]. Importantly, the average linear Zeeman
shift of the transition pair Jz → Jz0 ¼ Jz and −Jz → Jz0 ¼
−Jz vanishes. The quadratic Zeeman shift coefficient ΔηB2

is zero in case (i), and small for cases (ii) and (iii).
Furthermore, for (ii) the average quadratic shift of the
transition between the homologous states J1 ¼ J10 ¼ L −
1=2; Jz;1 ¼ Jz;10 and the transition between states J2 ¼
J20 ¼ Lþ 1=2; Jz;2 ¼ Jz;20 ¼ Jz;1 vanishes. A list of favor-
able transitions, including some that are not of the above
type, is given in the Supplemental Material, Table I, [39].
The spectroscopy of a single transition can already

reach a high accuracy, for well-chosen transitions. We
assume realistic experimental conditions and performance
(Supplemental Material, Sec. A [39]). One technique for
reducing the EQ shift consists in measuring the transition
frequency as the average of three values obtained with the
quantization axis (magnetic field) oriented in three orthogo-
nal directions [16]. The quadratic Zeeman shift can be
corrected for by measuring the Zeeman pair Jz → Jz0 ¼ Jz

and−Jz → Jz0 ¼ −Jz and using the frequency difference to
determine the magnetic field strength. For H2

þ, consider
the two Zeeman components of the transition between the
homologous states ðI ¼ 0; S ¼ 1=2; J ¼ 7=2; Jz ¼ �5=2Þ
[case (ii)] of ðv ¼ 0; L ¼ 4Þ → ðv0 ¼ 1; L0 ¼ 4Þ, which
have a particularly small EQ shift (see the Supplemental
Material, Table I [39]). Assuming that the orthogonal
direction technique permits compensation of the individual
EQ shift to a residual level of 1%, it results in a 4 × 10−17

residual fractional EQ shift, which we also take as its
uncertainty σEQ=f0. The quadratic Zeeman shift correction
uncertainty is σZ2=f0 ¼ 1 × 10−17. The scalar Stark shift’s
fractional value, 1 × 10−17, may conservatively be taken as
Stark uncertainty σS=f0. The BBR shift is ΔfBB=f0 ¼
−10 × 10−17. The uncertainty σBB;T0

associated with the
experimental uncertainty σT0

¼ 8 K of the BBR temper-
ature is σBB;T0

=f0 ¼ 4ðσT0
=T0ÞjΔfBBj=f0 ≃ 1 × 10−17. In

this example, the theoretical uncertainties of the shift
coefficients are not significant. The dominant systematic
uncertainty arises from the EQ shift.
In HDþ we recently demonstrated that transitions with

zero total angular momentum projection in the initial and
final state, Jz ¼ 0 → J0z ¼ 0, are most favorable, since they
exhibit a small quadratic Zeeman shift at low field [16] (and
ΔηB ¼ 0). We found no suitable transitions (within the
reasonable requirement v ¼ 0; v0 ≤ 5) having also particu-
larly small electric quadrupole shift. This results (see the
Supplemental Material, Sec. B [39]) in total uncertainties
equal or larger than σsyst;f0=f0 ¼ 3 × 10−16, significantly
larger than for H2

þ.
Before entering the discussion of the composite fre-

quency method, we point out that the combination of just
two suitably chosen transitions can already improve the
accuracy. In the case of H2

þ, consider as an example the
transition between the homologous states ðI ¼ I0 ¼ 1; S ¼
S0 ¼ 1=2; J ¼ J0 ¼ 3=2; Jz ¼ J0z ¼ �1=2Þ and the transi-
tion between the homologous states ðI¼I0¼1;S¼S0¼
3=2;J¼J0¼5=2;Jz¼J0z¼�5=2Þ of ðv¼0;L¼1Þ→ð1;1Þ,
having a transition frequency difference of 37.5 MHz.
Their EQ shifts are almost equal and opposite, so that
averaging over the two transitions reduces this shift to a
negligible level even without use of the orthogonal field
technique.
Details of the composite frequency method.—We now

discuss in more detail the concept of composite frequency
which allows reducing further the already small systematic
shift uncertainties. In general, a composite frequency fc ¼P

N
i βifi is free of Zeeman, quadrupole and Stark shift

if the conditions,
P

iβiΔηB;i ¼ 0 (linear Zeeman effect
for particular transitions of H2

þ) and/or
P

iβiΔηB2;i ¼ 0
(quadratic Zeeman effect for particular transitions of HDþ
and H2

þ),
P

iβiΔηVzz;i ¼ 0,
P

iβiΔα
ðlÞ
i ¼ 0,

P
iβiΔα

ðtÞ
i ¼

0 are satisfied, respectively, assuming that the contributing
individual transitions are selected as described above. For
the homonuclear molecular hydrogen ions, the latter two
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conditions also eliminate the “composite” scalar polar-
izability and thus eliminate the (static) BBR shift, inde-
pendently of the temperature T0, since all individual shifts
are proportional to T4

0 in the static approximation. For
HDþ there is no such simple dependence [36], and the BBR
shift cancellation constraint, for a particular temperature
T0, is

P
iβiΔfBB;iðT0Þ ¼ 0, and represents an additional

condition.
If we chooseN ¼ M þ 1 ¼ 5 transitions for H2

þ orN ¼
M þ 1 ¼ 6 for HDþ we find corresponding solutions fβig
(up to a common factor). But since there exists a large
number ð≫ NÞ of transitions with weak systematic shifts
that may be employed, a large numberK of solutions fβigK
exists, with a corresponding transition set fi1;…; iNgK for
each. We may therefore further down-select the solutions
according to additional criteria. Obviously, the accuracy of
cancellation of the shifts depends on the inaccuracies of
the theoretical shift coefficients σy;Δηj (which as shown
above are small and will be reduced further with future
theory work) and on the amount of variation σy;Xj

of the
perturbations in-between measurements of individual
frequencies (which is to be minimized experimentally).
We can then compute, for each solution, the total absolute
uncertainty σsyst;fc ¼

P
M
j σ2j of the composite frequency,

σ2syst;fc ¼
P

N
i

P
M
j ðσ2y;Δηj;i þ σ2y;Xj

nj2Þβ2i ðΔηj;iXnj
j Þ2; ð2Þ

[with the appropriate replacement for the contribution
from the BBR shift of HDþ, β2i fσ2abs;ΔfBB;i þ ðσy;TT0Þ2
½dΔfBB;iðT0Þ=dT�2g] and select a solution with a low value.
We emphasize that for given shift coefficient uncertainties
fσy;Δηj;ig and given experimental instabilities fσy;Xj

g, a
desired level of σsyst;fc leads to conditions for the maximum
permitted field strengths fXjg.
Numerical results.—We have performed a numerical

search for the composite frequency with lowest fractional
systematic uncertainty σsyst;fc=fc. We find that there are
many solutions with very close values. Tables II and III in the
Supplemental Material [39] give one example for each ion,
which we now discuss. For H2

þ we limit the transition set to
fundamental vibrational transitions, for which the light shift
can be reduced to a negligible level, and further only to initial
states in v ¼ 0, which appear to be more easily prepared.
Because transitions belonging to this set have similar
differential polarizabilities and therefore also BBR shifts,
the nulling of the composite BBR shift and Stark shift leads
to a composite frequency fc significantly smaller than the
individual transition frequencies f0;i and therefore to a
relatively large fractional uncertainty [40]. Instead, we
consider simplified composite frequencies in which only
the EQ, the linear and the quadratic Zeeman shifts are
canceled (M ¼ 3). If the linear Zeeman shift is canceled by
probing, for each transition, the Zeeman pair as described
above, a total of N ¼ 6 transitions must be measured.
(Alternatively, it is also possible to do so using a minimum

of N ¼ 4 transitions.) The solution shown in the
Supplemental Material [39] includes only two vibrational
transitions, reducing the number of required lasers to only
two. The dominant uncertainties arise from the noncancel-
lable shifts: the Stark shift is jΔfS;fc=fcj≃ 1.2 × 10−17,
which we also take as the corresponding uncertainty, and the
uncertainty of the BBR shift is nearly the same. The latter
may be reduced either by better knowledge of the trap
temperature, or by use of a cryogenic ion trap. The total
uncertainty σsyst;fc=fc ≃ 1.6 × 10−17 is approximately a
factor 3 lower than for the single-transition example given
above. The additional experimental effort is only moderately
higher, with the advantage that the orthogonal quantization
axis technique is unnecessary. Note that a small magnetic
field B ¼ 0.07 G is chosen. This value is still compatible
with resolving individual Zeeman components, provided
appropriate ultranarrow-linewidth lasers are employed.
In the case of HDþ, we show in the Supplemental Material

[39] a particular solution where not the BBR shift but its
derivative with respect to temperature is canceled, via the
constraint

P
iβidΔfBB;iðT0Þ=dT0 ¼ 0. We set B ¼ 0.02 G

butcan relax the requirement formagnetic field instabilityσy;B
compared to the H2

þ case. This results in a composite BBR
shiftΔfBB;fc ¼ 4 × 10−17. Its uncertainty isdominatedby the
theoreticaluncertaintiesof the individualBBRshifts, resulting
in σBB;ΔfBB;fc=fc ¼ 2 × 10−18. (As described above, this
contribution can be reduced with future theory work.) We
find a total uncertainty σsyst;fc=fc ¼ 5 × 10−18, limited by the
uncertainty of the EQ shift. Alternatively, we can choose to
cancel the BBR shift instead of its derivative, but find that the
best solutions yield a moderately larger total uncertainty.
Extension of the method.—With the proposed approach,

additional systematic shifts can in principle be compen-
sated, as long as they are transition-dependent. This
includes the light shift caused by the UV laser that cools
the atomic ion, or the Zeeman shift contributions of higher
order in B, if relevant. In case of the light shift caused by
the spectroscopy laser(s) we must take into account that
different transitions may require different lasers, which
provide different, independent intensities at the molecular
ion. The composite frequency method can be applied
within a subset of all transitions contributing to the
composite frequency, where a subset includes the hyperfine
components of a single rovibrational transition. Such a
subset would be interrogated sequentially by the same laser
beam, appropriately frequency-tuned. The intensity can
then be kept constant across the subset of transitions by
maintaining the beam power constant since the beam size
will typically not change upon small frequency changes.
If this is done, the light shift may then be compensated for
the subset. This can be applied to more than one subset, if
necessary.
Conclusion.—We computed the external-field shift coef-

ficients of the one-electron molecular ions H2
þ and HDþ,

and have identified vibrational transitions in H2
þ having
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extremely low systematic shifts (< 5 × 10−17). Moreover,
we have proposed to measure composite transition frequen-
cies, selected by theoretical calculation to be free of
external-field shifts. This approach should enable a sys-
tematic uncertainty as low as several 10−18 for HDþ, and
< 2 × 10−17 for H2

þ. The expense of the composite
frequency method is the need of performing spectroscopy
and frequency measurements of at least M þ 1 transitions
(M being the number of systematic effects to be canceled),
in different wavelength ranges. However, this is techno-
logically feasible, as has been already shown in the case of
HDþ [2,3]. Thus, our theoretical analysis provides a strong
motivation and guide to future experiments employing
molecules to probe fundamental physics issues.

We thank H. Olivares Pilón for communicating results of
unpublished calculations. We are indebted to J.-P. Karr for
pointing out the relevance of the quadratic Zeeman effect in
Hþ

2 . This work was done in the framework of project Schi
431/19-1 funded by Deutsche Forschungsgemeinschaft.
V. I. K. also acknowledges support of the RFBR under
Grant No. 12-02-00417.

Note added.—Recently, a study of systematic effects in
H2

þ and HDþ was published by J.-P. Karr in Ref. [31].
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