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A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is
presented. The nuclear polarization corrections in the zeroth and first orders in 1=Z are evaluated to the
binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear
polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections.
This allows for new prospects for probing the QED effects in a strong electromagnetic field and the
determination of fundamental constants.
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The enormous progress made in experimental investi-
gations of heavy highly charged ions during the last
decades (see, e.g., Refs. [1–5] and references therein)
has triggered the vigorous development of ab initio
QED theory in the presence of strong nuclear fields. The
relativistic behavior of electrons in highly charged ions
requires a fully relativistic description from the very
beginning, i.e., nonperturbative in the αZ parameter, where
Z is the nuclear charge number. This plays a key role in
contrast to QED theory for light atomic systems, where
the parameter αZ is employed as an expansion parameter.
Over the last decades essential progress has been achieved
in theoretical calculations of various spectroscopic proper-
ties of highly charged ions, such as transition energies,
hyperfine splitting (HFS), and the g factor (see Refs. [6–8]
for reviews). In many cases, further improvement of the
achieved theoretical accuracy seems strongly limited by the
lack of knowledge of the nuclear properties. For example,
in the case of the g factor of the H-like lead ion the
uncertainty of the nuclear charge distribution correction
is the main source of the total uncertainty, and in the case of
the HFS in the H-like bismuth ion the uncertainty of the
nuclear magnetization distribution correction (the so-called
Bohr-Weisskopf effect) strongly masks the QED contribu-
tions. In Ref. [9] it was proposed to consider a specific
difference of the HFS values of H- and Li-like ions with the
same nucleus, where the uncertainty of the Bohr-Weisskopf
effect is significantly reduced and the QED effects can be
tested on the level of a few percent. In the case of the g
factor, similar cancellations of the finite nuclear size
corrections have been recognized for the specific
differences of the g factors of H- and Li-like ions in
Ref. [10] and of H- and B-like ions in Ref. [11], respec-
tively. These differences can be calculated with a substan-
tially higher accuracy, which opens excellent perspectives
for a test of the QED effects and even provides a possibility
for an independent determination of the fine structure
constant from the strong-field QED theory.

Another nuclear effect appears due to the intrinsic
nuclear dynamics, where the nucleus interacting with
electrons via the radiation field can undergo real or virtual
electromagnetic excitations. The latter effect leads to the
nuclear polarization (NP) correction, e.g., to the binding
energy of the electrons. Being restricted to phenomeno-
logical descriptions of the nucleon-nucleon interaction,
the NP correction sets the ultimate accuracy limit up to
which QED corrections can be tested in highly charged
ions. Therefore, an important question should be addressed:
To which extent can NP corrections be canceled in specific
differences? In this Letter, we rigorously examined the NP
and the screened NP corrections to the binding energies,
HFS, and the g factor of heavy highly charged ions. We
analyze the ratio of the finite nuclear size and the NP
corrections and consequently evaluate the NP contribution
to the specific differences, designed for the cancellation of
the finite nuclear size and the Bohr-Weisskopf effect.
In Refs. [12,13] a relativistic field theoretical approach

to the NP corrections in electronic atoms incorporating
the effects due to virtual collective nuclear excitations
within the framework of bound-state QED for atomic
electrons was developed. This approach was successfully
applied in calculations of NP corrections to the binding
energies [12–16], to the HFS [17], and to the bound-
electron g factor [18].
The lowest-order diagrams describing the NP effect

are depicted in Fig. 1. As virtual nuclear excitations, we
account for the dominant ones arising from the collective
nuclear dynamics, such as rotations of deformed nuclei,
harmonic surface vibrations, and giant resonances. Since
the velocities associated with the collective nuclear dynam-
ics are nonrelativistic, we can restrict ourselves to the
nuclear charge-density fluctuation (electric multipole tran-
sitions) and neglect contributions arising from fluctuations
of the nuclear vector current (magnetic multipole transi-
tions). It is most suitable to employ the Coulomb gauge and
keep the longitudinal component ~D00 of the effective
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photon propagator ~Dμν only. It describes the interaction
between the electrons and virtual nuclear transitions and
takes the form [12,13]

~D00ðr1; r2;ωÞ ¼
X

LM

BðEL;L → 0Þ 2ωL

ω2 − ω2
L þ i0

× FLðr1ÞFLðr2ÞYLMðΩ1ÞY�
LMðΩ2Þ: ð1Þ

Here ωL is the nuclear excitation energy and BðEL;L → 0Þ
is the corresponding reduced electric transition probability.
This form of the propagator is also very suitable for
numerical calculations, since it exclusively depends on
phenomenological quantities such as transition energies
ωL, and corresponding electric transition strengths. The
radial dependence carried by the functions FL may be
specified utilizing, e.g., a sharp surface model for describ-
ing the corresponding collective nuclear multipole transi-
tion densities [12–16]. The nuclear ground-state sphere
radius R0 is determined as R0 ¼

ffiffiffiffiffiffiffiffi
5=3

p hr2i1=2, where
hr2i1=2 is the root-mean-square charge radius.
The energy shift due to the lowest-order NP effect is

given by

ΔENP ¼ e2
i
2π

Z
∞

−∞
dω

X

n

hanj ~D00ðωÞjnai
εa − ω − εnu

; ð2Þ

where the summation runs over the complete Dirac
spectrum, and u ¼ 1 − i0 preserves the proper treatment
of the poles of the electron propagator. In Table I the
leading order NP corrections are presented for the 1s, 2s,
and 2p1=2 binding energies in 208

82 Pb and 238
92 U ions. For the

low-lying rotational and vibrational nuclear excitations,
the experimental values for the excitation energies ωL and
electric transition strengths BðEL;L → 0Þ are taken from
Ref. [19] for the 208

82 Pb ion and from Ref. [20] for the 238
92 U

ion. The corresponding ωL and BðEL;L → 0Þ values for
the giant resonances have been estimated employing the
phenomenological energy-weighted sum rules [21]. The
summation over the spectrum of the Dirac equation has
been performed employing the dual-kinetic-balance finite
basis set method [22] with basis functions constructed
from B splines [23]. The Dirac spectrum is calculated in
the field of extended nuclei utilizing nuclear charge-
density distributions with recent values for the radii

hr2i1=2 ¼ 5.5010 fm and hr2i1=2 ¼ 5.8569 fm in the case
of lead and uranium ions, respectively. As one can see from
Table I, the obtained results are in a fair agreement with the
previous calculations presented in Ref. [16], and a better
agreement is found with the results obtained by the direct
numerical integration.
In Table I we also present the corresponding leading

order finite nuclear size corrections ΔEFNS together with a
ratio of the NP and finite nuclear size terms ΔNP=FNS
defined asΔNP=FNS ¼ ΔENP=ΔEFNS. These ratios appear to
behave rather similarly for all the considered electron
states. This means that when we cancel the finite nuclear
size corrections in an energy difference, the NP effect will
also be reduced to a large extent.
However, the hydrogenic excited energy states are not

always accessible experimentally; e.g., at present, the
highest accuracy was achieved in measurements of the
2p1=2 − 2s transition energy in the heavy Li-like 238U89þ
ion [24]. Therefore, it becomes of distinct importance to
investigate the NP effect in few-electron ions. In the
presence of other electrons, in addition to the leading
order one-electron NP correction, terms combining the
interelectronic-interaction and NP effects appear. In anal-
ogy to the corresponding QED corrections we refer to them
as the screened NP contribution. The diagrams of the NP
corrections to the one-photon exchange are depicted in
Fig. 2. Expressions for the energy shift due to this effect can
be derived according to the Feynman diagrams depicted but
are too lengthy to be presented here. Their evaluations have
been performed in both Feynman and Coulomb gauges
for the photon propagator describing the electron-electron
interaction, thus providing an accurate check of the
numerical procedure. The results obtained for the screened

FIG. 1. Feynman diagrams representing the lowest-order nu-
clear polarization effect to the electron binding energy. The bound
electron (double line) interacts with the nucleus (heavy line) in its
ground state via the exchange of virtual photons (wavy lines).

TABLE I. Nuclear polarization ΔENP and finite nuclear size
ΔEFNS corrections to the 1s, 2s, and 2p1=2 binding energies in
208
82 Pb and 238

92 U ions. The nuclear polarization corrections are
compared with the previous calculations [16]. The corresponding
ratios of the nuclear polarization and finite nuclear size con-
tributions ΔNP=FNS are presented.

State 1s 2s 2p1=2

208
82 Pb nucleus

ΔENP (meV) −28.89 −5.033 −0.4249
−29.3a −5.0a

−31.8b −5.5b

ΔEFNS (eV) 67.18 11.66 0.9991
ΔNP=FNS (10−3) −0.430 −0.431 −0.425

238
92 U nucleus

ΔENP (meV) −188.2 −35.88 −4.153
−197.6a −37.2a −4.2a

−213.4b −40.9b −4.6b

ΔEFNS (eV) 198.6 37.73 4.412
ΔNP=FNS (10−3) −0.947 −0.951 −0.941
aReference [16]: Direct numerical integration.
bReference [16]: B-spline calculations.
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NP corrections to the ð1sÞ2 binding energy and to the
ð1sÞ22s, ð1sÞ22p1=2, and ð1sÞ22p3=2 ionization energies in
208
82 Pb and 238

92 U ions are presented in Table II. As one can
see, the screened NP correction is comparable with the
leading order term, and has to be taken into account in
specific differences constructed for eliminating the finite
nuclear size effect. In Table II we also present the finite
nuclear size effect coming from the first-order interelec-
tronic-interaction correction, the so-called screened finite
nuclear size correction ΔESFNS, together with the corre-
sponding ratio ΔSNP=SFNS defined as ΔSNP=SFNS ¼
ΔESNP=ΔESFNS. The ratio of screened NP and finite
nuclear size corrections appears to be rather stable for
different electronic configurations. This opens a possibility
to eliminate in such differences not only the finite nuclear
size corrections, but also the NP terms to a rather large
extent.
As an example for such a cancellation, let us consider the

following difference. One of the most precise measure-
ments was performed for the 1s Lamb shiftΔEð1sÞ in H-like
uranium U91þ [25] and for the 2p1=2 − 2s transition energy
ΔEð2p1=2−2sÞ in U89þ [24]. In both cases the uncertainty of
the finite nuclear size correction essentially contributes
to the total theoretical error bars. Thus, we can construct
the following specific difference: Δ0E ¼ ΔEð2p1=2−2sÞþ
ξΔEð1sÞ ≈ 355.8 eV, where the parameter ξ ¼ 0.161 856
is chosen in a way to cancel the leading order and the
screened finite nuclear size terms. Such a cancellation is
also rather stable with respect to the employed nuclear

charge distribution model. The NP corrections are canceled
in Δ0E up to 10−4 eV, opening a possibility for unprec-
edented tests of strong-field QED. Although we have
considered here only nuclear excitations of an electric
type, this conclusion will hold in general, since the
cancellation being discussed is observed for each individual
nuclear excitation. In view of this, we can expect that this
cancellation will be rather independent from the employed
nuclear models.
Let us now go over to the NP effects to the HFS in few-

electron ions. The HFS transition line in Li-like Bi80þ has
been recently observed and directly measured in a laser
spectroscopy measurement at GSI [4,5]. This has allowed
us, for the first time, to compare experimental and theo-
retical values for the specific difference between the HFS of
H- and Li-like bismuth ions. Although the present exper-
imental accuracy is smaller than the theoretical one [26,27],
in the future SPECTRAP Penning trap facility this will
be improved by 3 orders of magnitude [28]. Substantial
progress in the theoretical calculations of the specific
difference [26,27,29,30] allows us to improve the theoreti-
cal accuracy by an order of magnitude, and the present
uncertainty is partially restricted by the NP correction,
which was so far known only for the 1s HFS [17].
In this Letter, we present for the first time results for the

leading order and the screened NP corrections to the HFS
of H-, Li-, and B-like bismuth ions. The leading order and
the screened NP effect are given by the diagrams depicted
in Figs. 3 and 4, respectively.
The basic expressions for the leading order diagrams are

similar to those derived in Ref. [17], and for the screened
diagrams they are rather bulky and will be presented
elsewhere. The numerical procedure has been accurately
checked by employing the Feynman and Coulomb gauges
for the photon propagator describing the interelectronic
interaction. For the nuclear parameters of low-lying vibra-
tional levels of the nearly spherical odd-even 209

83 Bi nucleus,
we have employed the corresponding collective vibration
levels in the neighboring even-even isotope of 208

82 Pb (the
weak-coupling limit). Moreover, we have evaluated the
effect of single-nucleon excitations and the effect going
beyond the weak-coupling limit. Both have been found to
be negligible in the case of the 209

83 Bi nucleus compared to

TABLE II. Screened nuclear polarization and screened finite
nuclear size corrections ΔESNP and ΔESFNS, respectively, to the
ð1sÞ2 binding energy and to the ð1sÞ22s, ð1sÞ22p1=2, and
ð1sÞ22p3=2 ionization energies (with the opposite sign) in
208
82 Pb and 238

92 U ions. The ratio of the screened nuclear polari-
zation and screened finite nuclear size contributions ΔSNP=SFNS
are presented.

State ð1sÞ2 ð1sÞ22s ð1sÞ22p1=2 ð1sÞ22p3=2

208
82 Pb nucleus

ΔESNP (meV) 0.8441 0.3017 0.1218 0.0335
ΔESFNS (eV) −1.9629 −0.6988 −0.2763 −0.0863
ΔSNP=SFNS (10−3) −0.430 −0.432 −0.441 −0.388

238
92 U nucleus

ΔESNP (meV) 5.498 2.048 0.9369 0.1793
ΔESFNS (eV) −5.802 −2.152 −0.9816 −0.2117
ΔSNP=SFNS (10−3) −0.948 −0.952 −0.955 −0.847

FIG. 2. Feynman diagrams representing the screened nuclear
polarization effect to the electron level energy. Notations are the
same as in Fig. 1.

FIG. 3. Feynman diagrams representing the lowest-order nu-
clear polarization effect in the presence of an external potential.
The dashed line terminated with the triangle denotes the
interaction with the external magnetic field. Notations are the
same as in Fig. 1.
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the effect of the collective core excitations. The detailed
consideration will be presented elsewhere. The obtained
results for the leading order and the screened NP correc-
tions, ΔEHFS;NP and ΔEHFS;SNP, respectively, are presented
in Table III. Here, we employ the nuclear single-particle
model for the description of the Bohr-Weisskopf effect.
In the case of the 1s state, a fair agreement has been
achieved with the previous value [17], which was obtained
within the pointlike magnetic moment approximation.
Now we introduce two specific differences: The first is
between the HFS of H- and Li-like ions Δ0

HLEHFS defined

as Δ0
HLEHFS ¼ ΔE½ð1sÞ22s�

HFS − ξHLΔE
½1s�
HFS, and the second is

between the HFS of H- and B-like ions Δ0
HBEHFS ¼

ΔE½ð1sÞ2ð2sÞ22p1=2�
HFS − ξHBΔE

½1s�
HFS. The parameters ξHL and

ξHB are chosen in a way to cancel the Bohr-Weisskopf
effects, and they appear to be rather stable with respect
to variations of the nuclear model of the magnetization
distribution [9]. In the case of 209

83 Bi, these parameters are
chosen to be ξHL ¼ 0.168 86 and ξHB ¼ 0.014 459. In
Table III we present the obtained results for the total NP
contribution to the specific differences under consideration.
As we can stress now, the NP effects are essentially reduced
in both differences. The obtained results for the
Δ0

HLEHFS;NP and Δ0
HBEHFS;NP appear to be rather stable

with respect to the changes of the charge and magnetization

distribution models. In view of this we assign an uncer-
tainty of 50% to the total NP corrections to the specific
differences. This result opens the possibility for further
theoretical improvements of the HFS specific differences
and tests of the magnetic sector of strong-field QED.
Moreover, this can lead to the determination of the nuclear
magnetic moments from a comparison between the theo-
retical and experimental values for the specific differences.
We can now also consider the situation for the bound-

electron g factor. The leading order and the screened NP
corrections are given by the same diagrams as those for the
HFS; see Figs. 3 and 4, respectively. In Table IV we present
our numerical results obtained for the g factors of H-, Li-,
and B-like lead ions. Our values for ΔgNP are in a
reasonable agreement with the previous calculations of
Ref. [18]. We also present the results for the specific
differences between the H- and Li-like g factors g0HL defined
by g0HL ¼ g½ð1sÞ22s� − ξHLg½1s�, and between the H- and
B-like g factors g0HB ¼ g½ð1sÞ2ð2sÞ22p1=2� − ξHBg½1s�. In the case
of the Pb ions, the ξ parameters are chosen to be ξHL ¼
0.167 026 4 [10] and ξHB ¼ 0.009 741 6 [11]. As one can
see from the table, the NP corrections are canceled in
specific differences by about 2 orders of magnitude. Our
conservative estimation of the total uncertainty is of about
50% of the effect. In comparison with the rough estimation
of the screened NP correction made in Ref. [11], here we
rigorously take into account the first-order interelectronic-
interaction correction to the nuclear polarization. We have
also evaluated the effect originating from nuclear excita-
tions induced via two types of magnetic interactions: One is
due to the interaction with a constant magnetic field, and
the other one is due to the magnetic interaction with an
electron. In Ref. [31] such corrections were referred to as
nuclear magnetic susceptibility corrections to the g factor.
The contributions of this effect to the g factor are found to
be −6.6 × 10−11, −1.1 × 10−11, and −0.4 × 10−11 for the
1s, 2s, and 2p1=2 states, respectively. The corresponding
contributions to the specific differences are at least by an
order of magnitude smaller than our uncertainty. Thus, we

FIG. 4. Feynman diagrams representing the screened nuclear
polarization effect in the presence of an external potential. For
brevity, we depict here only the direct part of the nuclear
polarization correction for all the diagrams except the first
one. Notations are the same as in Fig. 1.

TABLE IV. Individual contributions to the leading order ΔgNP
and the screened ΔgSNP nuclear polarization corrections to the
ground-state g factor of H-, Li-, and B-like 208

82 Pb ions in 10−8.
The total nuclear polarization contribution to the specific
differences, Δg0HL;NP and Δg0HB;NP, are also presented in 10−8.
The leading order nuclear polarization corrections are compared
with the previous calculations [18].

State 1s 2s 2p1=2 Δg0HL;NP Δg0HB;NP
ΔgNP −19.77 −3.444 −0.291

−22a −3.8a −0.32a

ΔgSNP 0.129 0.104
−0.013ð6Þ 0.006(3)

0.004(6)b

aReference [18].
bReference [11].

TABLE III. Individual contributions to the leading order
ΔEHFS;NP and the screened ΔEHFS;SNP nuclear polarization
corrections to the ground-state hyperfine splitting of H-, Li-,
and B-like 209

83 Bi ions in μeV. The total nuclear polarization
contribution to the specific differences, Δ0

HLEHFS;NP and
Δ0

HBEHFS;NP, are also presented in μeV.

State 1s 2s 2p1=2 Δ0
HLEHFS;NP Δ0

HBEHFS;NP

ΔEHFS;NP 50.34 8.865 0.730
55a

ΔEHFS;SNP −0.340 −0.095
0.025(12) −0.09ð5Þ

aReference [17].
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can state an improvement of the accuracy of the NP
correction to the specific difference g0HB by a factor of 2.
In view of this new result we can push back the ultimate
limit, defined by the NP effects, to the specific difference
g0HB and consequently to the possible accuracy of the
determination of the fine structure constant. The recom-
mended value of the fine structure constant according to
the recent CODATA [32] is α ¼ 1=137.035 999 074ð44Þ.
The corresponding uncertainty in the specific difference
δg0HB½α� ¼ 5 × 10−11 is 1.5 times larger than the theoretical
limit given by the NP uncertainty δg0HB;NP ¼ 3 × 10−11.
Another principal uncertainty in the specific difference is
coming from the remaining finite nuclear size effect.
However, this uncertainty can be substantially reduced
by employing the more accurate charge distribution param-
eters obtained from muonic atoms [33,34].
To conclude, we have evaluated the leading order and the

screened NP corrections to the binding energies, HFS, and
the bound-electron g factor of heavy highly charged ions.
The interelectronic-interaction effects have been rigorously
evaluated within the QED perturbation theory up to the first
order in 1=Z. The effect of the nuclear polarization has been
evaluated for the specific differences constructed in a way
to cancel the nuclear size corrections. In all cases consid-
ered here it turns out that the NP corrections determining
the ultimate accuracy cancel substantially. Therefore, the
rigorous investigations of the specific differences provide a
unique opportunity to test the strong-field QED with a
much higher accuracy than expected before. The ultimate
accuracy of the nuclear polarization for the specific differ-
ence g0HB has been now improved by a factor of 2. This may
clear the way for a more accurate determination of the
fine structure constant from the strong-field QED with a
precision similar to the one obtained from the investigations
of the free-electron g factor.
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