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We report the STAR measurements of dielectron (eþe−) production at midrapidity (jyeej < 1) in
Auþ Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. The measurements are evaluated in different invariant mass

regions with a focus on 0.30–0.76 (ρ-like), 0.76–0.80 (ω-like), and 0.98–1.05 (ϕ-like) GeV=c2. The
spectrum in the ω-like and ϕ-like regions can be well described by the hadronic cocktail simulation. In the
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ρ-like region, however, the vacuum ρ spectral function cannot describe the shape of the dielectron excess.
In this range, an enhancement of 1.77� 0.11ðstatÞ � 0.24ðsystÞ � 0.33ðcocktailÞ is determined with
respect to the hadronic cocktail simulation that excludes the ρ meson. The excess yield in the ρ-like region
increases with the number of collision participants faster than the ω and ϕ yields. Theoretical models with
broadened ρ contributions through interactions with constituents in the hot QCD medium provide a
consistent description of the dilepton mass spectra for the measurement presented here and the earlier data
at the Super Proton Synchrotron energies.

DOI: 10.1103/PhysRevLett.113.022301 PACS numbers: 25.75.Cj, 25.75.Dw

Recent results from the Relativistic Heavy Ion Collider
(RHIC) continue to provide mounting evidence that a
strongly coupled quark-gluon plasma (QGP) has been
created in the Auþ Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV

[1]. One of the scientific goals of the current high energy
heavy ion program is to quantify properties of this QGP
matter, such as the equation of state and the intrinsic chiral
characteristics. Dileptons are a clean and penetrating probe
for studying these properties because leptons do not suffer
from strong interactions.
Thermal dileptons radiated from the partonic medium

have been suggested as a unique probe for temperature
measurement of the QGP [2]. Theoretical calculations
suggest that at RHIC energies, QGP thermal dilepton
production becomes significant at dilepton invariant mass
Mll > 1 GeV=c2, with increasingly higher masses corre-
sponding to earlier stages of the production [3]. As the
system cools, dileptons emitted from the hadronic medium
are governed by the coupling of vectormesons (e.g., ρ) to the
medium and are expected to dominate the low-mass pro-
duction (Mll < 1 GeV=c2) [4]. Their vacuum mass spectra
are determined by the spontaneously broken chiral sym-
metry. Theoretical calculations, however, suggest that vector
meson spectra will be modified in a hot and dense medium,
reflecting the restoration of the broken chiral symmetry
[5,6]. After freeze-out, long lived particles (π0, η, DD̄, etc.)
can decay to lepton pairs. The sum of these contributions,
usually referred as a hadronic cocktail, can be calculated
based on the measured or estimated yields.
Dilepton measurements have been a subject of exper-

imental investigations since the early days of heavy ion
collisions [7–12]. Of particular interest, measurements from
CERES and NA60 (

ffiffiffiffiffiffiffiffi

sNN
p ¼ 8.75–17.2 GeV) showed a

clear enhancement in the mass region below ∼0.7 GeV=c2

when compared to known hadronic sources. High precision
data from NA60 demonstrated that the enhancement is con-
sistent with in-medium broadening of the ρ mass spectrum
instead of a dropping mass hypothesis [11,13–16]. NA60
also observed that after removing correlated charm contri-
butions, slope parameters of dimuon transversemass spectra
show a sudden change above the ϕmass, which is argued to
be indicative of the partonic thermal dileptons presence [11].
At RHIC, PHENIX reported a significant enhancement
in the mass region of 0.30–0.76 GeV=c2 in Auþ Au
collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. The enhancement was

predominantly at low transverse momentum (pT) and for
the most central collisions [12].
Experimental measurements suggest that the QCD

medium at top RHIC energies undergoes a much longer
partonic phase than at Super Proton Synchrotron (SPS)
energies [1]. Moreover, the typical net baryon densities
are found to be significantly different between the two
energy regimes [17]. Nevertheless, model calculations that
successfully described the SPS data [13–16] expect the
low-mass dilepton production to remain dominated by
the vector meson contributions from the hadronic phase
with its spectral function broadening governed by the total
baryon density [3]. Therefore, dielectron measurements at
RHIC energies can provide a clear probe into the produc-
tion mechanisms as well as the evolution dynamics of these
systems. The magnitude of the dielectron excess reported
by the PHENIX, however, is yet to be reproduced by such
models.
In this Letter, we report the measurement at STAR

of dielectron production in Au+Au collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. Data used in this analysis were recorded
in the 2010 RHIC run, which includes 2.4 × 108 minimum
bias (0%–80%) and 2.2 × 108 central (0%–10%) Auþ Au
events. The main subsystems used for the analysis are the
time projection chamber (TPC) [18] and the time-of-flight
(TOF) detectors [19].
Electron candidates (including positrons if not specified)

were reconstructed in the TPC and required to have more
than 20 out of a maximally possible 45 track-fit points
to ensure sufficient momentum resolution. Each candidate
should have at least 16 hit points that can be used for
the determination of the specific energy loss (dE=dx) in
the TPC gas. Electron candidates were also required to
originate from the collision vertex based on an extrapolated
distance of closest approach (DCA) to this vertex of less
than 1 cm. Electrons were identified via a combination of
the dE=dx measurement and the velocity measurement
from the TOF [20]. The electron sample purity integrated
over the measured pT region was ensured to be at least 95%
in order to keep correlated residuals due to hadron conta-
mination to be less than 10% of the signal. All electron
candidates with pT > 0.2 GeV=c and pseudorapidity
jηj < 1 from the same event were combined to generate
the unlike-sign pair distribution at midrapidity (jyeej < 1).
Dielectron pairs from photon conversion in materials were
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suppressed by the DCA selection and further reduced by a
cut on the minimum pair opening angle [12].
We adopted two approaches to reproduce the background

that do not originate from pair production: the like-sign pair
combinations and the mixed-event technique, for which
unlike-sign pairs fromdifferent eventswere used. In the low-
mass region, like-sign pairs better reproduce the background
spectrum, compared to mixed-event techniques, because
the unlike-sign background contains residual correlations
(e.g., conversion of photon pairs) [21]. For this reason, the
same-event like-sign distribution, corrected for the accep-
tance differences between like-sign and unlike-sign pairs,
was used as the background for Mll < 1 GeV=c2. At pair
masses above 1 GeV=c2 , where the statistics of the like-sign
distribution become limited, mixed-event distributions were
used to evaluate the background. The mixed-event unlike-
sign distribution, after normalization, provides a good
description of the uncorrelated combinatorial background.
The normalization factorwas determined based on the same-
event like-sign and the mixed-event like-sign distributions
in the mass region of 1–2 GeV=c2. The normalized mixed-
event unlike-sign distribution agrees with the same-event
like-sign distribution above 1 GeV=c2 within uncertainties,
but the centroid value falls slightly below the like-sign trend
with increasing mass, which is attributed to residual corre-
lated background (e.g., jet fragments). The total background
at Mll > 1 GeV=c2, therefore, includes the combinatorial
background using the mixed-event unlike-sign pairs and the
residual correlated background based on a parametrization
to the data.
The raw distributions of eþe− invariant mass, the

reconstructed background and the background-subtracted
signal in 200 GeV Auþ Au minimum bias collisions are
shown in Fig. 1(a). The signal-to-background ratios from
pþ p [21], Auþ Au minimum bias, and Auþ Au central
collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV are shown in Fig. 1(b).

The raw signal was corrected for the detector tracking
efficiency. The single electron tracking efficiency was
determined using the embedding technique in which
Monte Carlo simulated electrons, propagated through the
STAR detector in GEANT [22] to produce raw signals, are
embedded into real data prior to processing with the off-line
reconstruction software. The TOF matching and particle
identification efficiencies were evaluated based on mea-
sured distributions from the real data [23]. The dielectron
pair efficiency was obtained by convoluting with single
electron efficiency and its kinematic dependence. Finally,
we corrected for an additional inefficiency at very low mass
due to the photon conversion pair cut.
The systematic uncertainty in our final mass spectrum

is estimated from the following sources: (a) uncertainty
on the normalization factor for mixed-event background
subtraction, 0.06%, resulting in up to a maximum of 15%
uncertainty at 1 GeV=c2; (b) uncertainty on the residual
correlated background resulting in 10% uncertainty in the

mass region of 1–3 GeV=c2; (c) uncertainty on the cor-
rection factor of the acceptance difference between like-
sign and unlike-sign pairs resulting in 5%–8% uncertainty
at 0.3–1 GeV=c2; (d) uncertainty due to the hadron
contamination in the electron samples resulting in 8%
uncertainty between 1 and 3 GeV=c2, and (e) uncertainty
on the detector efficiency correction, 13%. The systematic
uncertainty in the raw dielectron spectrum is evaluated as
the sum of components (a)–(d) applied at each pair mass
region. The final systematic uncertainty is calculated as the
quadratic sum of the raw spectrum uncertainty and the pair
detection efficiency uncertainty (e).
In order to disentangle the various sources contributing

to the dielectron signal, a hadronic cocktail simulation,
performed previously for pþ p collisions [21], was gen-
erated for Auþ Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. The

simulation included dielectron contributions from decays
or Dalitz decays of π0, η, η0, ω, ϕ, J=ψ , cc̄, bb̄, and Drell-
Yan (DY) production. Tsallis blast-wave parametrizations
[24] based on RHIC measurements of light hadron spectra
(π�, K�, ϕ, p, p̄, high-pT η) [25–28] were used as the
inputs to our cocktail simulations. The same parameters
were also applied to mesons which have not yet been
measured (ω, η at low-pT , and η0). The dielectron yields
from correlated charm or bottom decays and DY produc-
tion are based on PYTHIA model [29] calculations in which
parameters have been tuned to published STAR measure-
ments [30]. The input charm pair production cross section
is dσ=dyjy¼0 ¼ 171� 26 μb per nucleon-nucleon collision
[30] and the eþe− pairs from correlated charm decays in
PYTHIA were scaled by the number of binary collisions
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FIG. 1 (color online). (a) Uncorrected distributions of eþe−
invariant mass (open circles), the reconstructed background (red
histogram) and the signal (solid dots) pairs in 200 GeV Auþ Au
minimum bias collisions. (b) The ratio of signal to background in
pþ p [21] and Auþ Au collisions at
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sNN
p ¼ 200 GeV.
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(Nbin) to obtain the contribution in the Auþ Au collisions.
The systematic uncertainty on the cocktail is dominated by
the experimental uncertainties on the measured particle
yields and spectra. In particular, the large uncertainty in the
cocktail in the mass region of 0.15–1 GeV=c2 is mainly
attributed to the unmeasured low-pT η mesons and the
input charm cross section.
In Fig. 2(a), a comparison is shown between the hadronic

cocktail simulations and the efficiency corrected dielectron
yield in 200 GeV minimum bias Auþ Au collisions, in the
STAR acceptance range of pe

T > 0.2 GeV=c, jηej < 1, and
jyeej < 1. The hadronic cocktail simulations exclude con-
tributions from the ρ meson to avoid double counting when
compared to models. The ratios of our measured data
to the cocktail are shown in panel (b) of Fig. 2. Panel (c) in
Fig. 2 shows an expanded view of the excess mass
region with the cocktail subtracted. An enhancement of

1.77�0.11ðstatÞ�0.24ðsystÞ�0.33ðcocktailÞ is observed
when compared to the hadronic cocktail without the ρ
contribution in the mass region of 0.30–0.76 GeV=c2. This
enhancement factor, determined within the STAR accep-
tance, is significantly lower than what has been reported by
PHENIX [12]. We have compared the STAR and PHENIX
cocktail simulations and applied PHENIX azimuthal accep-
tance. We found that neither differences in the acceptance
nor the cocktail simulations can explain the difference in
the enhancement factor measured by the two experiments.
Also included in Figs. 2(b) and 2(c) are two theoretical

model calculations within the STAR acceptance: model I,
by Rapp et al., is an effective many-body calculation
[3,13,31]; model II, by Linnyk et al., is a microscopic
transport model—parton-hadron-string dynamics (PHSD)
[16,32,33]. Both models have successfully described the
dimuon enhancement observed by NA60 with a broadened
ρ spectral function due to in-medium hadronic interactions.
The models, however, failed to reproduce the dielectron
enhancement reported by PHENIX [12,32]. Compared to
our data in the mass region below 1 GeV=c2, both models
describe the observed dielectron excess reasonably well
within uncertainties. Other theoretical model calculations
can also reproduce the dielectron excess at low mass
in our measurement [34,35]. Our measurements disfavor
a pure vacuum ρ spectrum for the excess dielectrons
(χ2=NDF ¼ 26=8, where NDF is the number of degrees
of freedom, in 0.3–1 GeV=c2) .
We integrated the dielectron yields in three mass regions:

0.30–0.76 (ρ-like), 0.76–0.80 (ω-like) and 0.98–1.05 (ϕ-
like) GeV=c2, and present the centrality and pT dependence
of the ratios of data to cocktail within the STAR acceptance
in Figs. 3(a) and 3(b). The cocktail calculation can repro-
duce the dielectron yields in the ω-like and the ϕ-like
regions. The ratios to cocktail in the ρ-like region show a
weak dependence on the number of participating nucleons
(Npart) and pT . Both models show excesses comparable
to the data in the centrality and pT regions investigated.
Figure 3(c) shows the integrated yields scaled by Npart for
the ρ-like with cocktail subtracted, the ω=ϕ-like without
subtraction as a function ofNpart. The ω=ϕ-like yields show
a Npart scaling. The dashed curve depicts a power-law fit
(∝ Na

part) to the Npart scaled ρ-like dielectron excess with
cocktail subtracted, and the fit result shows a¼0.54�0.18
(statþ uncorrelated syst), indicating that dielectrons in the
ρ-like region are sensitive to the QCD medium dynamics,
as expected from ρ medium modifications in theoretical
calculations [31,36].
Figure 4 shows a comparison of the invariant mass

spectra between 0%–80% minimum bias and 0%–10%
most central Auþ Au collisions. Both spectra were scaled
by Npart in Fig. 4(a), and the ratios of the two scaled spectra
are presented in Fig. 4(b). Horizontal bands on the right
side depict the Npart and Nbin scaling. We note the
following. (i) The dielectron production starts with the
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FIG. 2 (color online). (a) eþe− invariant mass spectrum from
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV Auþ Au minimum bias (0%–80%) collisions
compared to a hadronic cocktail simulation. The vertical bars on
data points depict the statistical uncertainties, while the systematic
uncertainties are shown as gray boxes (smaller than the marker).
(b) Ratios to cocktail for data and model calculations [31,32].
Green bands depict systematic uncertainties on the cocktail.
(c) Mass spectrum of the excess (data minus cocktail) in the
low-mass region compared to model calculations. Green brackets
depict the total systematic uncertainties including those from
cocktails. Systematic errors are highly correlated across all data
points.
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Npart scaling in the π0 and η dominant region and then rises
towards the Nbin scaling at ∼0.7 GeV=c2. This can be
explained by the hadronic medium ρ contribution, which
is expected to increase faster than Npart [31,36], and the
contribution from correlated charm which, if not modified,

should follow the Nbin dependence. Possible charm decor-
relation has negligible impact in this mass region. (ii) In the
mass region of 1–3 GeV=c2, the ratio between the central
and minimum bias spectra shows a moderate deviation
from the Nbin scaling (1.8σ deviation for the data point at
1.8–2.8 GeV=c2). We have used two extreme scenarios to
model the charm decay dielectron pairs: The dashed line in
Fig. 4(a) depicts the PYTHIA calculation with charm corre-
lations preserved; the dotted-dashed line assumes a fully
randomized azimuthal correlation between charmed hadron
pairs, and the pT suppression factor on the single electron
spectrum from RHIC measurements is also included [37].
The difference in themass region 1–3 GeV=c2, if confirmed
with better precision, would constrain the magnitude of
the de-correlating effect on charm pairs while traversing
the QCD medium and/or possible other dielectron sources
(e.g., QGP thermal radiation) in this mass region from
central Auþ Au collisions.
In summary, we present STAR measurements of dielec-

tron production inAuþ Aucollisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV.

The dielectron yields in the ω and ϕ mass regions are well
described by the hadronic cocktail model while yields at
higher mass, 1–3 GeV=c2, can be understood as mostly
fromdecay leptons of charmpairs. In the0.30–0.76 GeV=c2

region, however, there exists a clear excess over the hadronic
cocktail that cannot be explained by a pure vacuum ρ. This
enhancement is significantly lower than what has been
reported by PHENIX. Compared to the yields in the ω
and ϕ regions, the excess yields in the ρ region exhibit
stronger growth with more central collisions. Theoretical
model calculations that include a broadened ρ spectral
function from interactions with the hadronic medium can
describe the STAR measured dielectron excess at the low
mass region.
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