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We introduce a N ¼ 1 supergravity model with a very simple hidden sector coupled to the electroweak
gauge and Higgs sectors of the minimal supersymmetric standard model. At the classical level,
supersymmetry and SUð2Þ × Uð1Þ are both spontaneously broken, with vanishing vacuum energy.
Two real flat directions control the two symmetry-breaking scales m3=2 and mZ. The two massless scalars
are a gauge singlet and the standard Higgs boson. All other unobserved particles have masses of orderm3=2.
This may be a new starting point for studying the compatibility of naturalness with the observed mass
hierarchies.
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Introduction.—The 7-8 TeV run of the LHC [1] saw the
historical discovery of a scalar particle, with mass close to
125 GeV and thus far compatible with the standard model
(SM) Higgs boson. Its highlights also include considerably
stronger bounds on supersymmetric particles and additional
Higgs bosons than those previously established at the LEP
and Tevatron colliders. These results, complemented by
other precise results from flavor physics, are challenging
the concept of naturalness and its application to the gauge
hierarchy problem. At face value, the simplest supersym-
metric extensions of the SM, for example, the minimal
supersymmetric standard model (MSSM), look fine-tuned
with more than percent precision. However, there are good
reasons to insist on the hypothesis that supersymmetry
plays a role in some unified theory of the fundamental
interactions underlying the SM.
Waiting for the sharper experimental picture that should

emerge from the 13-14 TeV run of the LHC, theorists are
broadening the spectrum of supersymmetric models under
consideration. Two main approaches are being pursued [2]:
the first insists on the concept of naturalness and on a light
spectrum of supersymmetric particles at the verge of being
excluded; the second gives up the concept of naturalness
and splits the mass scale of supersymmetric particles and
extra Higgs bosons from the mass scale of the observed
weak and Higgs bosons.
It would be very important to establish whether this

bifurcation is really unavoidable, especially if no new
particle is discovered after LHC-14: Is there some special
supersymmetric extension of the SM that can solve the
naturalness problem despite a little (or not-so-little) hier-
archy between the weak scale and the scale of the so far
unobserved MSSM particles? At present we do not have
convincing examples, and it seems unlikely that a positive
answer can be found sticking to renormalizable theories
with softly broken rigid supersymmetry.

Some inspiration may come from supergravity, where in
addition to the gauge hierarchy problem we must also
address the vacuum energy problem, and both problems are
visible already at the classical level, when the spontaneous
breaking of supersymmetry and of the electroweak gauge
symmetry are implemented.
In this Letter we perform a first step in the search for a

N ¼ 1 supergravity model that, once embedded in a
suitable ultraviolet completion, might be naturally com-
patible with the mass hierarchies imposed on us by
experimental data. The model contains a very simple
hidden sector, a chiral multiplet and a vector multiplet,
where spontaneous supersymmetry breaking takes place
according to the mechanism recently formulated in Ref. [3].
We include in the observable sector only the electroweak
gauge sector and the Higgs sector of the MSSM, leaving
aside for the moment, for the sake of simplicity, the matter
sector and the strong interactions.
At the classical level, and because of its geometrical

properties, the model exhibits some remarkable features:
supersymmetry and the gauge symmetry are both sponta-
neously broken, with vanishing vacuum energy; two
independent real flat directions control the scale of
supersymmetry breaking in Minkowski space, parame-
trized by the gravitino mass m3=2, and the scale of
electroweak gauge symmetry breaking, parametrized by
the weak boson masses mW;Z; apart from the massive
weak bosons, the photon and two classically massless
scalars, a gauge singlet and a SM-like Higgs boson, all
the other states in the spectrum do or can [4] have masses
of order m3=2; all renormalizable interactions are exactly
as in the MSSM, with a definite prediction for several
of its parameters, and the nonrenormalizable interactions
are suppressed by inverse powers of the Planck mass
MP ¼ ð8πGNÞ−1=2 ≃ 2.4 × 1018 GeV.
These results are a promising starting point, with some

novel ingredients, for addressing the dynamical generation
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of the observed hierarchies of scales in supergravity
models. To make the model realistic, however, we must
include the strong interactions, the matter sector, and the
quantum corrections. Such a program deserves a separate
study and goes beyond the aim of the present Letter: we
conclude by outlining some of the open questions and a
possible future strategy for addressing them.
The model.—We now specify our model, which couples

the hidden sector of Ref. [3] to the electroweak gauge and
Higgs sector of the MSSM, in the standard formalism of
N ¼ 1, d ¼ 4 supergravity [5] and in natural units
where MP ¼ 1.
The gauge group is SUð2ÞL ×Uð1ÞY × gUð1Þ. The first

two factors are associated with electroweak interactions, as
in the SM. The vector multiplet V ∼ ð ~V; VμÞ of gUð1Þ is part
of the hidden sector that breaks supersymmetry.
The chiral multiplets are a SM singlet, T ∼ ðT; ~TÞ, and

the two MSSM Higgs doublets, H1 ∼ ðH1; ~H1Þ and
H2 ∼ ðH2; ~H2Þ. A crucial feature, inherited from
Ref. [3], is that the imaginary part of T shifts undergUð1Þ, while the two Higgs superfields do not transform:

δϵT ¼ iϵ; δϵH1 ¼ δϵH2 ¼ 0 ðϵ ∈ RÞ: ð1Þ

Motivated by string compactifications and extended
supergravities [6], we choose the Kähler manifold for
the scalar fields (unifying the chiral multiplets in the
hidden and Higgs sectors) to be SOð2;5Þ=½SOð2Þ×SOð5Þ�,

e−K ¼ ðT þ T̄Þ2 − jH0
1 −H0

2j2 − jH−
1 þHþ

2 j2; ð2Þ

and, in the field basis of Eq. (2), a constant superpotential,

W ¼
ffiffiffi
2

p
~g: ð3Þ

Finally, we choose a factorized gauge kinetic function,

~f ¼ 1

~g2
; fY ¼ aY þ bYT; fL ¼ aL þ bLT; ð4Þ

where ð~g; aY; bY; aL; bLÞ are real constants. As explained in
Ref. [3], the fact that W and ~f are controlled by the same
coupling constant ~g is not a fine-tuning, but the conse-
quence of an underlying N ¼ 2 gauged supergravity.
Classical potential and vacua.—The classical potential

of the model is

V0 ¼ e2KðAþ Bþ CþDÞ; ð5Þ

A ¼ 2~g2ðjH0
1 −H0

2j2 þ jH−
1 þHþ

2 j2Þ
¼ 2~g2½H†

1H1 þH†
2H2 − ðH1H2 þ H:c:Þ�; ð6Þ

B ¼ g02

8
ðjH0

1j2 − jH0
2j2 þ jH−

1 j2 − jHþ
2 j2Þ2; ð7Þ

C ¼ g2

2
jH0

1H
−
1 þH0

2H
þ
2 j2; ð8Þ

D ¼ g2

8
ðjH0

1j2 − jH0
2j2 − jH−

1 j2 þ jHþ
2 j2Þ2; ð9Þ

where we have introduced the field-dependent SUð2ÞL and
Uð1ÞY coupling constants:

g02 ≡ 1

RefY
; g2 ≡ 1

RefL
: ð10Þ

Each of the four addenda contributing to V0 is positive
semidefinite. After gauge fixing, inequivalent vacua can be
classified by hH−

1 i ¼ hHþ
2 i ¼ 0 and

hTi ¼ x; hH0
1i ¼ hH0

2i ¼ 2xv; ð11Þ

where x > 0 and v ≥ 0 parametrize two real flat directions.

As in Ref. [3], the gUð1Þ gauge symmetry and supersym-
metry are spontaneously broken on flat Minkowski space at
all vacua. The electroweak gauge symmetry is also sponta-
neously broken on the generic vacuum, although it can be
restored at the special point v ¼ 0.
Spectrum and interactions.—In the hidden sector, the

spectrum is exactly as in Ref. [3]:

m2
3=2¼m2

1=2 ¼
~g2

2x2
; m2

V ¼ 2m2
3=2; m2

0 ¼ 0; ð12Þ

in a self-explanatory notation. Setting

T ¼ xð1þ tþ iτÞ; ð13Þ

where τ is the Goldstone boson absorbed by the massive
vector Vμ and t is a canonically normalized massless scalar.
Similarly, the Goldstino absorbed by the massive gravitino
is a linear combination of ~T and ~V, and the orthogonal
combination is a massive spin-1=2 Majorana fermion.
In the observable sector, the spectrum corresponds to a

special choice of parameters in the MSSM. The gauge
boson masses are

m2
γ ¼ 0; m2

W ¼ ḡ2v2; m2
Z ¼ðḡ2þ ḡ02Þv2; ð14Þ

where ḡ≡ hgi and ḡ0 ≡ hg0i. The Higgs boson spectrum
can be easily obtained from V0 by performing the following
decomposition, which brings all the kinetic terms to
canonical form and diagonalizes all the mass terms:

H−
1 ¼

ffiffiffi
2

p
xðH− −G−Þ; ð15Þ

Hþ
2 ¼

ffiffiffi
2

p
xðHþ þGþÞ; ð16Þ

H0
1 ¼ 2x

�
vþ h0 þH0

2
þ i

A0 − G0

2

�
; ð17Þ
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H0
2 ¼ 2x

�
vþ h0 −H0

2
þ i

A0 þ G0

2

�
: ð18Þ

The result is

m2
A ¼ 2m2

3=2; m2
� ¼ m2

A þm2
W; ð19Þ

m2
h ¼ 0; m2

H ¼ m2
A þm2

Z: ð20Þ

In MSSM notation, see Eq. (6), it corresponds to

m2
1 ¼ m2

2 ¼ −m2
3 ¼ m2

3=2

�
β ¼ −α ¼ π

4

�
: ð21Þ

Notice that here the relations (21) follow from the classical
Kähler geometry (2) and not from a fine-tuning.
In the gaugino-higgsino sector, and in a suitable basis of

canonically normalized fields, the chargino and neutralino
mass matrices are as in the MSSM, with β ¼ π=4:

MC ¼
�
M2 mW

mW μ

�
; ð22Þ

MN ¼

0
BBBBB@

M1 0 − mZsWffiffi
2

p mZsWffiffi
2

p

0 M2
mZcWffiffi

2
p − mZcWffiffi

2
p

− mZsWffiffi
2

p mZcWffiffi
2

p 0 −μ
mZsWffiffi

2
p − mZcWffiffi

2
p −μ 0

1
CCCCCA: ð23Þ

In the above equations, sW ≡ sin θW and cW ≡ cos θW . The
higgsino mass parameter is

μ ¼ m3=2: ð24Þ

Notice that, in contrast with the MSSM, the super-
potential (3) does not contain a Higgs mass term.
However, an effective μ term is generated from the
Kähler potential, according to a well-known mechanism
of broken supergravity [7], first explored in Ref. [8] for
the special Kähler manifold of Eq. (2). The gaugino mass
parameters are

M1¼m3=2ð1−g02aYÞ; M2¼m3=2ð1−g2aLÞ: ð25Þ

Two extreme choices for the gauge kinetic functions fY
and fL in Eq. (4) are worth considering. The first one,
corresponding to bY ¼ bL ¼ 0, leads to constant fY ¼
aY ¼ 1=g02 and fL ¼ aL ¼ 1=g2, thus to M1 ¼ M2 ¼ 0
[9]. The second one, aY ¼ aL ¼ 0, leads to
M1 ¼ M2 ¼ m3=2.
After moving to canonically normalized fields and

taking the appropriate flat limit, the model factorizes into
a decoupled hidden sector times the electroweak gauge and
Higgs sectors of the MSSM: all the MSSM renormalizable

interactions are reproduced [10] for the parameter choices
(21), (24), and (25).
Keeping MP finite, the low-energy effective Lagrangian

includes, besides the MSSM, the gravitational interaction
and other supergravity interactions, corresponding to local
operators of dimension d > 4, suppressed by M4−d

P .
Discussion.—Our model realizes, in an economical and

predictive framework, some features previously discussed
in supersymmetric extensions of the SM but never
combined.
The breaking of supersymmetry with vanishing

classical vacuum energy and the gravitino mass sliding
along a classical flat direction is the feature of no-scale
models [11]. The additional breaking of the electroweak
gauge symmetry, along another classical flat direction
and preserving the vanishing of the classical vacuum
energy, was previously introduced in Ref. [12]. There,
however, additional classical flat directions were present,
both in the hidden sector and in the MSSM Higgs sector.
Here, instead, the only two classical flat directions are in
one-to-one correspondence with the scales of supersym-
metry and electroweak symmetry breaking. The axion τ

is absorbed by the massive gUð1Þ vector, as in Ref. [3].
The only classically massless fields are the dilaton t in
the hidden sector and the SM Higgs boson h [13] in the
MSSM Higgs sector. The masses of the other Higgs
bosons receive supersymmetry-breaking contributions of
order m3=2.
It would be natural to interpret the two massless scalars

as pseudo Goldstone bosons of some accidental symmetry.
Such an interpretation is possible, with some qualifications.
All the isometries of the Kähler manifold (2) other than the
gauged ones are explicitly broken by the potential (5).
However, after moving to the unitary gauge τ ¼ 0 for the

gauged shift symmetry, H0
1 −H0

2 ¼ H−
1 þHþ

2 ¼ 0 (i.e.,
A0 ¼ H0 ¼ H� ¼ 0) solve their classical equations of
motion for arbitrary configurations of the remaining fields.
The truncated scalar Lagrangian, obtained by inserting the
above solutions in the original one, is expressed in terms of

the residual scalars (T;H0
1 þH0

2; H
−
1 −Hþ

2 ) and has two
global symmetries spontaneously broken on the vacuum.
The masslessness of t is accounted for by the rigid scale
transformations:

ðT;H0
1 þH0

2; H
−
1 −Hþ

2 Þ → ρðT;H0
1 þH0

2; H
−
1 −Hþ

2 Þ;

(ρ ∈ R). As already discussed in Ref. [14], the massless-
ness of h is accounted for by the rigid shift symmetry
(σ ∈ R):

H0
1 þH0

2 → H0
1 þH0

2 þ σ:

Variations.—We briefly describe some possible varia-
tions on the model discussed above, concerning the gauge
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group and the manifold for the scalar fields. They weaken
the connection of the model with string compactifications
and extended supergravity, in particular, the geometrical
explanation of Eq. (21), but they preserve some other
remarkable properties, with some differences that may play
a role in the search for realistic completions.
The manifold for the scalar fields changes from

the one in Eq. (2) to the one described by the Kähler
potential

K̂ ¼ −3 logðT þ T̄Þ þ jH0
1 −H0

2j2 þ jH−
1 þHþ

2 j2
ðT þ T̄Þn ; ð26Þ

with n ≤ 1 or n ≥ 2 (not necessarily integer).
Simultaneously, the gauge group becomes SUð2ÞL×
Uð1ÞY , without the gUð1Þ vector multiplet gauging the T
shift symmetry. The superpotential W and the gauge
kinetic functions fY and fL remain the same as in
Eqs. (3) and (4).
The classical potential is still positive semidefinite for

conceivable values of n and of the ratio appearing in
Eq. (26). It now has a complex T flat direction in addition to
the real flat direction associated with the SM Higgs field. In
the hidden sector, the spectrum consists of the massless
dilaton t and axion τ associated with the T fluctuations and
the massive gravitino, which absorbs the Goldstino ~T, with
m2

3=2 ¼ ~g2=ð4x3Þ if we stick to Eq. (13). In the MSSM
sector, after replacing 2x with ð2xÞn=2 on the right-hand
side of Eq. (11) and in Eqs. (15)—(18), the spectrum is as
before, with two modifications:

m2
A ¼ 2ðn − 2Þðn − 1Þm2

3=2 μ ¼ ð1 − nÞm3=2: ð27Þ

Outlook.—We regard the results of this Letter as a novel
and promising starting point for investigating the dynami-
cal generation, in the manner of Coleman and Weinberg
[15], of the observed hierarchies of scales and a phenom-
enologically viable spectrum in realistic supergravity mod-
els. However, several steps need to be performed to carry
out such an investigation.
First, we should complete the MSSM gauge group by

also including the SUð3ÞC factor associated with the strong
interactions: this is straightforward, the only freedom being
the choice of a gauge kinetic function fC similar in form to
those in Eq. (4).
Then, we should include the MSSM matter sector. This

is also straightforward, in principle, but choosing the
Kähler potential for the matter fields introduces some
arbitrariness in model building. The problem is simplified
by the fact that, in realistic models, we can expand the
Kähler potential up to quadratic fluctuations in the quark
and lepton superfields. However, the T dependence of
the coefficients will affect the spectrum, in particular, the
supersymmetry-breaking mass terms. Moreover, the

breaking of the global symmetries by the standard top
Yukawa coupling in the superpotential might be too hard
for a natural generation of the desired mass hierarchies and
spectrum. It may be interesting to explore the possibility of
generating the top quark mass by mixing with heavy
fermions, in analogy with models of partial compositeness
[16,17].
Finally, we can envisage computing the calculable

(logarithmic) quantum corrections in the model, suitably
parametrizing those that would require knowledge of the
ultraviolet completion of our effective supergravity, with
the goal of checking whether realistic mass hierarchies
can be generated for some values of the parameters.
The first attempts at carrying out this program were

performed in Ref. [18], including only the quantum
corrections associated with the MSSM fields, dismissing
the possibility of Oðm2

3=2M
2
PÞ contributions to the effec-

tive potential, signaled by the one-loop quadratically
divergent contributions proportional to StrM2, and also
ignoring the Oðm4

3=2Þ cosmological term in the MSSM
potential. Some of these issues were addressed later. It
was shown in Ref. [19] that there are special classes of
supergravity models whose geometrical structure is
inherited from superstring compactifications or from
gauged extended supergravities, where the only field
dependence of StrM2 along the classically flat directions
is via the gravitino mass, StrM2 ¼ km2

3=2, where k ∈ R
is a constant. This may allow for cancellations of the
one-loop quadratic divergences after the inclusion of all
hidden sectors, and there are examples of models where
k ¼ 0. It is encouraging that in the model considered here
StrM2 ¼ 0 and StrM2 ¼ −8m2

3=2, respectively, for the
two choices of gauge kinetic functions discussed after
Eq. (25). The corresponding values for the variations are
StrM2 ¼ −4ð2n∓1Þm2

3=2. Assuming the absence of
Oðm2

3=2M
2
PÞ contributions, the possibility of generating

the desired hierarchies was further discussed in some
special cases. The importance of the cosmological term in
the MSSM potential was stressed in Ref. [20], where the
implications of moduli-dependent Yukawa couplings for
the third generation were also studied. The possibility of
explaining a little hierarchy between mh;W;Z and m3=2 was
pointed out in Ref. [21].
Despite these partial results, we feel that a novel

systematic study of the radiative generation of the desired
hierarchies, in the possible realistic completions of our
model, is in order. It should take into account today’s
experimental constraints and the different options for
giving a mass to the top quark and its superpartners. We
are looking forward to addressing these questions in a
future work.
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