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Recently, it was shown that the spectrum of anomalous dimensions and other important observables in
planar N ¼ 4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert
problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to theN ¼ 6

supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This
may be an important step towards the exact determination of the interpolating function hðλÞ characterizing
the integrability of this model. We also discuss a surprising relation between the quantum spectral curves
for the N ¼ 4 supersymmetric Yang-Mills theory and the N ¼ 6 supersymmetric Chern-Simons theory
considered here.
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Introduction.—TheAharony-Bergman-Jafferis-Maldacena
(ABJM)model [1] is a unique example of three-dimensional
gauge theory which may be completely solvable in the
planar limit. Up to now, the full power of integrability has
been exploited only to study the spectrum of anomalous
dimensions of single-trace operators. In particular, echoing
the developments in the study of N ¼ 4 supersymmetric
Yang-Mills (SYM) theory in 4D, an exact description of the
spectrum has been obtained by combining information from
two-loop perturbation theory [2] and on the strong coupling
limit, corresponding to the classical limit of type IIA
superstring theory on AdS4 × CP3 [3–5]. This led to the
asymptotic Bethe ansatz conjectured in Ref. [6], describing
operators with large quantum numbers, and ultimately to the
thermodynamic Bethe ansatz (TBA) equations [7,8], an
infinite set of nonlinear integral equations encoding the
anomalous dimension spectrum as a function of a dressed
coupling constant hðλÞ. The exact dependence of h on the ’t
Hooft coupling λ is still a missing ingredient in the
integrability approach to the ABJM theory (see Ref. [9]
for a review).
It is expected that other important observables can be

studied with integrable model tools. In the case of N ¼ 4

SYM theory, it was shown in Refs. [10,11] that a system of
boundary thermodynamic Bethe ansatz equations describes
the (generalized) cusp anomalous dimension Γðϕ; λÞ char-
acterizing the logarithmic UV divergences of Wilson lines
forming a cusp of angleϕ. In some near-BPS limits, the cusp
anomalous dimension can also be studied with independent
localization techniques (see, for example, Ref. [12]), leading
to nonperturbative exact results which nicely agree with
integrability computations [13,14].
For the ABJM model, the bremsstrahlung function

BðλÞ characterizing the leading small-angle behavior

Γðϕ; λÞ ∼ ϕ2BðλÞ was recently computed in Ref. [15]
(see also Ref. [16]). As already put forward in Ref. [10],
obtaining the same quantity with integrability methods
would allow one to fix the exact relation between h and λ.
An important development in N ¼ 4 SYM theory was

the discovery of an alternative formulation of the TBA as a
nonlinear matrix Riemann-Hilbert problem, known as a Pμ
system or a quantum spectral curve. It is a finite set of
universal functional relations, believed to encode not only
all states of the anomalous dimension spectrum but also,
with an appropriate change in the asymptotics, the cusp
spectrum [14,17]. This new tool also proved to be much
more efficient than the TBA for extracting exact results. In
particular, it led to the nine-loop prediction for the Konishi
dimension at weak coupling [18], three loops at strong
coupling [19], as well as to new results in the study of the
Balitsky-Fadin-Kuraev-Lipatov Pomeron.
In this Letter, we present the Pμ system for the ABJM

theory and discuss a surprising link with the quantum
spectral curve equations for N ¼ 4 SYM theory.
While here we only discuss the application of this new

set of equations to the spectrum of anomalous dimensions,
we believe that it will play an important role in fixing the
h − λ relation.
Outline of the derivation.—Conceptually, the Pμ system

is equivalent to other reformulations of the TBA as a set of
functional relations, such as the Y or T system. In particular,
it can be derived from the Y system [20] supplemented by
the discontinuity equations [21,22] describing the mono-
dromies of the Y functions around infinitely many branch
points in the complex domain of the spectral parameter u.
These branch points are located at positions u ¼ �2hþ
in=2, n ∈ Z. However, these functional relations are very
intricate, while the Pμ system involves only a finite number
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of objects, with the transparent analytic properties shown in
Fig. 2 [17]: the Pa functions are defined on a Riemann sheet
with a single cut running from −2h to þ2h, while the
functions μab, although still having an infinity of branch cuts
for ð−2h;þ2hÞ þ in, n ∈ Z, satisfy the simple relation

~μabðuÞ ¼ μabðuþ iÞ; ð1Þ

where ~μ and ~P denote the values of the Pμ variables
analytically continued around one of the branch points on
the real axis. Equation (1) means that, on a Riemann section
defined with long cuts, μab → μ

̬
ab is simply an i-periodic

function: μ
̬
abðuÞ ¼ μ

̬
abðuþ iÞ [17]. The two sections μ and

μ
̬
coincide for 0 < ImðuÞ < 1.
To reveal this hidden structure, one can start from

the analytic properties of the T functions. The latter are
in one-to-one correspondence with the nodes of the T-hook
diagram of Fig. 1 [20] and satisfy the discrete Hirota
equation (T system)

T ½þ1�
a;s T ½−1�

a;s ¼
Y

ða0∼aÞ↕
Ta0;s þ

Y
ðs0∼sÞ↔

Ta;s0 ; ð2Þ

where the products are over horizontal (↔) and vertical (↕)
neighboring nodes and T ½n� ≔ Tðuþ ði=2ÞnÞ.
In Ref. [23], a beautiful fundamental set of analyticity

conditions for the T functions was discovered, and this was
adapted to the ABJM case in Ref. [22]; see Appendix C of
that paper. Exploiting the gauge invariance of the Hirota
equation, it is possible to introduce two very special
gauges, denoted as T and T . For s ≥ a, in an appropriate
analyticity strip just above the real axis [24], the Ta;s
functions can be parametrized as

T 1;s ¼ P½þs�
1 P½−s�

2 − P½þs�
2 P½−s�

1 ; T 0;s ¼ 1;

T 2;s ¼ T ½þs�
1;1 T ½−s�

1;1 ; T3;2=T2;3 ¼ μ12; ð3Þ

where P1, P2, and μ12 have the simple properties discussed
above and will be part of the Pμ system. Furthermore, the T
gauge can be introduced with the transformation

Tn;s ¼ ð−1Þnðsþ1ÞTn;s

�
μ
̬ ½nþs−1�
12

�
2−n

; s ≥ 1;

Tα
n;0 ¼ ð−1ÞnTα

n;0

� ffiffiffiffiffiffiffiffiffiffiffi
μ
̬ ½n−1�
12

q �
2−n

;

Tα
n;−1 ¼ Tα

n;−1 ¼ 1; α ¼ I; II; ð4Þ

and the Tn;s functions are required to satisfy

Tα
n;0 ∈ Anþ1; α ¼ I; II; n ≥ 0;

Tn;1 ∈ An; n ≥ 1; ð5Þ
where we denote with An the class of functions free of
branch cuts in the strip jImðuÞj < n=2.
The strategy to derive the Pμ system is then the

following (see also Ref. [25]): starting from the Hirota
equation and the gauge transformation (4), it is possible
to compute any Tn;s function in terms of the only variables
P1, P2, and μ12, evaluated on different Riemann sheets.
Surprisingly, when rewritten in terms of these functions,
the conditions (5) show precisely how the system can be
closed, introducing only a finite number of fundamental
variables, each with one of the two types of cut structures
shown in Fig. 2. The simplest nontrivial example is
provided by the condition T2;1 ∈ A2. Computing T2;1 as
described above, and imposing that it has no cut on the real
axis, we find the constraint

0 ¼ T2;1 − ~T2;1 ¼ ðP½þ2�
1 P½−2�

2 − P½þ2�
2 P½−2�

1 Þ
× ð ~μ12 − μ12 − P1

~P2 þ P2
~P1Þ: ð6Þ

The first factor equals T 1;2, which is different from 0, and
this leads to a new relation:

~μ12 − μ12 ¼ P1
~P2 − P2

~P1: ð7Þ
As we will show in detail in a more extended work, the
structure of the Pμ system is already revealed just by
inspecting a few of the other conditions in Eq. (5). The
main results are presented in the next section.
The Pμ system.—The Pμ system for the ABJM model

involves a vector of six functions Pi, i ¼ 1;…; 6, and an
antisymmetric 6 × 6matrix μab, with the analytic properties

a

s

(0, 1)

FIG. 1 (color online). T hook for the ABJM T system.
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FIG. 2 (color online). Analytic structure for the two types of
variables in the quantum spectral curve.
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of Fig. 2. These variables, moreover, satisfy the nonlinear
constraints

P5P6 ¼ 1þ P2P3 − P1P4; ð8Þ

μχμχ ¼ 0: ð9Þ

Here, χ is a 6 × 6 symmetric matrix whose only nonzero
entries are

χ14 ¼ χ41 ¼ −1; χ23 ¼ χ32 ¼ 1; χ56 ¼ χ65 ¼ −1:

The fundamental Riemann-Hilbert relations read

~Pa ¼ Pa − μabχ
bcPc; ð10Þ

μab − ~μab ¼ −Pa
~Pb þ Pb

~Pa: ð11Þ

By appropriately constraining the asymptotics, all states
of the spectrum can be described by Eqs. (8)–(11). The
anomalous dimensions are also encoded in the asymptotics.
Below,wewill discuss thedescriptionof a specific subsector,
while the general case will be presented in a future work.
Even-parity states: For many states, it is sufficient to

consider a reduced system of equations. The parity invari-
ant sector of the spectrum is identified by the conditions
P5 ¼ P6 and μ5a ¼ μ6a ¼ −μa5 ¼ −μa6.

Qω system: Finally, we remark that, similarly to the case
of N ¼ 4 SYM theory, there is a complementary set of
conditions, named the Qω system, which is formally the
same as Eqs. (8)–(11), with the replacements

Pa → Qa; μab → ωab; ð12Þ

but with all the branch cuts reversed. Namely, the
functionsQa have a single branch cut for u ∈ ð−∞;−2hÞ∪
ðþ2h;þ∞Þ, while ωab are i-periodic functions (with the
additional interchange of some components in the non-
symmetric case) on a Riemann sheet defined with short
cuts, which can be rewritten as

ωabðuþ iÞ ¼ ωā b̄ðuÞ; ð13Þ

where a ¼ ā for a ¼ 1;…; 4 and 5̄ ¼ 6, 6̄ ¼ 5. We expect
this second system to play an important role in recovering
the structure of the asymptotic Bethe ansatz in the limit of
long operators [25].
Identification with N ¼ 4 SYM theory: An interesting

formal identification is possible between Eqs. (8)–(11) and
the Pμ system previously derived for the N ¼ 4 SYM
spectral problem [17,25]. This can be found by para-
metrizing the ABJM matrix μab in terms of eight functions
νi, ν̄i, i ¼ 1;…; 4, as follows:

μab ¼

0
BBBBBBBBB@

0 ν1ν̄1 ν2ν̄2 ν̄2ν3 − ν̄1ν4 ν1ν̄2 ν̄1ν2

−ν1ν̄1 0 ν̄2ν3 þ ν1ν̄4 ν3ν̄3 ν1ν̄3 ν̄1ν3

−ν2ν̄2 −ν̄2ν3 − ν1ν̄4 0 ν4ν̄4 −ν̄2ν4 −ν2ν̄4
ν̄1ν4 − ν̄2ν3 −ν3ν̄3 −ν4ν̄4 0 −ν̄3ν4 −ν3ν̄4

−ν1ν̄2 −ν1ν̄3 ν̄2ν4 ν̄3ν4 0 ν̄2ν3 − ν2ν̄3

−ν̄1ν2 −ν̄1ν3 ν2ν̄4 ν3ν̄4 ν2ν̄3 − ν̄2ν3 0

1
CCCCCCCCCA
; ð14Þ

with the additional requirement that

ν1ν̄4 − ν̄1ν4 ¼ ν2ν̄3 − ν̄2ν3: ð15Þ

By definition, νi and ν̄i have the same analytic properties as
μab, namely, ~νiðuÞ ¼ νiðuþ iÞ. The parametrization
[Eqs. (14) and (15)] is introduced in order to resolve the
constraint μχμχ ¼ 0. Moreover, as we discuss below, we

expect that ν½þ1�
1 and ν̄½þ1�

1 will play the role of fundamental
Q functions at weak coupling. Remarkably, it is possible to
rewrite Eqs. (10) and (11), eliminating μab completely. In
fact, one can check that all conditions (11) are satisfied,
provided νi and ν̄i transform in the following simple way
under analytic continuation:

~νi ¼ Uj
i ν̄j; ~̄νi ¼ Ūj

iνj; ð16Þ

where

Ua
b ¼

0
BBB@

P5 −P2 P1 0

P3 −P6 0 P1

P4 0 −P6 P2

0 P4 −P3 P5

1
CCCA;

Ūa
b ¼

0
BBB@

P6 −P2 P1 0

P3 −P5 0 P1

P4 0 −P5 P2

0 P4 −P3 P6

1
CCCA:

Finally, the discontinuity relations for Pi can be
rewritten as
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~P1 − P1 ¼ ν2 ~ν1 − ν1 ~ν2; ~P2 − P2 ¼ ν3 ~ν1 − ν1 ~ν3;

~P3 − P3 ¼ ν4 ~ν2 − ν2 ~ν4; ~P4 − P4 ¼ ν4 ~ν3 − ν3 ~ν4;

~P5 − P5 ¼ ν4 ~ν1 − ν1 ~ν4; ~P6 − P6 ¼ ν3 ~ν2 − ν2 ~ν3: ð17Þ

To present the identification with N ¼ 4 SYM theory, for
simplicity, let us restrict ourselves to the parity-symmetric
sector, by taking νi ¼ ν̄i and P5¼P6. Defining PN¼4

i ≔ νi
for i ¼ 1;…; 4 and organizing the components Pj into
a 4 × 4 antisymmetric matrix μN¼4

ab as shown in Table I,
one can see that, on the algebraic level, Eqs. (16) and
(17) are identical to the quantum spectral curve equations
for the left- or right-symmetric sector of N ¼ 4 SYM
theory [17]. Even the constraints perfectly match: in fact,
notice that Eq. (8) translates into the constraint of
Ref. [17]:

ðμ23N¼4Þ2 ¼ 1þ μ13
N¼4μ24

N¼4 − μ12
N¼4μ34

N¼4: ð18Þ
The identification can be extended to the nonsymmetric
case. The Pμ system for the most general sector of N ¼
4 SYM theory is described in Ref. [25]. It is remarkable
that the two theories differ only in the analytic properties.
As summarized in Table I, it is possible to map the
ABJM system into the N ¼ 4 SYM one by exchanging
the two types of cut structures presented in Fig. 2, so that
i-periodic functions ↔ functions with a single cut.
Description of the spectrum.—In this section, we provide

the information needed to study the subsector of the ABJM
model which includes the states dual to a folded spinning
string with angular momenta L in CP3 and S in AdS4. The
subsector is completely characterized by the pair of integers
ðL; SÞ and by the conformal dimension Δ. In the Pμ
system, these quantum numbers are encoded in the
asymptotics. As observed in Ref. [23] in the N ¼ 4 case,
Δ appears in the large-u behavior of the product of Y
functions Y1;1Y2;2:

lnY1;1Y2;2ðuÞ ¼ 2i
Δ − L
u

þOð1=u2Þ: ð19Þ

This quantity can be computed as

lnY1;1Y2;2ðuÞ ¼ ln μ12ðuþ iÞ − ln μ12ðuÞ≃ i∂u ln μ12ðuÞ;

and this implies that

ν1ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ12ðuÞ

p
∼ uΔ−L: ð20Þ

The asymptotics of P functions is related to the CP3

momentum L as

PaðuÞ≃ ðA1u−L; A2u−L−1; A3uLþ1; A4uLÞ; ð21Þ

with P5 ¼ P6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2P3 − P1P4

p
. To complete the

description of the state, we need the following relations
between the coefficients Ai:

A1A4 ¼
½ðΔ − Sþ 1Þ2 − L2�½L2 − ðΔþ SÞ2�

L2ð2Lþ 1Þ ;

A2A3 ¼
½ðΔ − Sþ 1Þ2 − ðLþ 1Þ2�½ðLþ 1Þ2 − ðΔþ SÞ2�

ðLþ 1Þ2ð2Lþ 1Þ :

ð22Þ

Equations (22) can be derived as discussed in Refs. [17,25].
It is interesting that, as remarked in Ref. [19], the
quantization of S appears naturally through the nonlinearity
of the Pμ system. The identifications above involve some
guesswork, but they can be checked by recovering the
correct weak coupling result, as shown below. We expect
that Eqs. (20)–(22), together with the pole-free property for
the P and μ functions, are the only physical input needed for
the computation of Δ at any value of h.
Aweak coupling test: As a test of our results, let us show

that they reproduce the two-loop Baxter equation. At
leading order at weak coupling, we expect that

Δ ¼ Lþ SþOðh2Þ; ð23Þ

and we see from Eq. (22) that A2A3 ¼ Oðh2Þ. Therefore,
we assume that P2 → 0, and we see that as a consequence,
the equations for ν1 and ν3 decouple:

�
~ν1

~ν3

�
¼
 
ν½þ2�
1

ν½þ2�
3

!
¼
�
P0 P1

P4 −P0

��
ν1

ν3

�
: ð24Þ

Making the identification ν½þ1�
1 ¼ Q, the system (24)

implies the Baxter equation

�
P½þ1�
0

P½þ1�
1

−
P½−1�
0

P½−1�
1

�
Q ¼ Q½þ2�

P½þ1�
1

−
Q½−2�

P½−1�
1

: ð25Þ

Generalizing the argument of Ref. [17], one can go further
and reproduce the expected two-loop result [2]:

Δ ¼ Lþ Sþ 2ih2∂u ln
Q½þ1�

Q½−1�

����
u¼0

þOðh4Þ: ð26Þ

TABLE I. The single-cut ↔ periodic mapping between the
ABJM and N ¼ 4 SYM theories (here shown in the symmetric
case), where we have denoted P5 ¼ P6 ¼ P0.

N ¼ 4 SYM ABJM

μij, i; j ¼ 1;…; 4 0
B@

0 −P1 −P2 −P0

P1 0 −P0 −P3

P2 P0 0 −P4

P0 P3 P4 0

1
CA

Pi, i ¼ 1;…; 4 νi

PRL 113, 021601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
11 JULY 2014

021601-4



Conclusions.—In this Letter, we have recast the spectral
problem for the ABJM model as a finite system of coupled
Riemann-Hilbert equations: the Pμ system. The similarity
with the N ¼ 4 SYM case suggests that an analogous
formulation should also exist for the still partly mysterious,
integrable models related to AdS3=CFT2. Studying other
examples would probably help to understand the hidden
algebraic structures underlying these systems. It would
be particularly interesting to investigate how the analytic
properties of the Pμ system are modified under the q
deformation discussed in Ref. [26]. This may help to clarify
the physical meaning of the formal map between the
quantum spectral curve equations for the N ¼ 4 SYM
and ABJM theories presented in this Letter.
Let us summarize some of the potential applications

to ABJM theory. Adapting the methods of Refs. [17,19],
our results should allow one to study the weak and strong
coupling expansions and nonperturbative near-BPS
regimes such as the small-spin limit described by the slope
function [27]. An interesting open problem would be to
find numerical solution methods valid at generic values of
the coupling. We believe that our equations can also be
applied to study the spectrum of cusped Wilson lines.
Finally, one can hope that studying the Pμ system in the

ABJM context would reveal some structures which are
harder to see in the case of N ¼ 4 SYM theory and help to
clarify the nature and the role of this intriguing mathemati-
cal object both in the AdS/CFT correspondence and in the
general theory of integrable models. Hopefully, this can
also teach us something new about nonperturbative gauge
theories and AdS/CFT.
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