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We establish a relation between two hallmarks of integrable systems: the relaxation towards the
generalized Gibbs ensemble (GGE) and the dissipationless charge transport. We show that the former one is
possible only if the so-called Mazur bound on the charge stiffness is saturated by local conserved quantities.
As an example we show how a non-GGE steady state with a current can be generated in the one-
dimensional model of interacting spinless fermions with a flux quench. Moreover, an extended GGE
involving the quasilocal conserved quantities can be formulated for this case.
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It is commonly accepted that in generic macroscopic
systems the long-time averages of local observables
coincide with the results for the statistical Gibbs ensemble
[1–4] and are uniquely determined by few parameters
related to conserved quantities, in particular the system’s
energy and particle number. Due to the presence of
macroscopic number of conserved quantities such a simple
scenario is not applicable to integrable systems [5–7].
However, there is a large and still growing evidence
that relaxation in the latter systems is consistent with
the generalized Gibbs ensemble (GGE) [8–12], where
the density matrix is determined not only by the
Hamiltonian H and particle number N but also by other
local conserved quantities Qi, i.e., ρGGE ∼ exp ½−βðH−
μNÞ −P

iλiQi�.
In this Letter we focus on the relaxation dynamics of one

of the most studied integrable models: the model of
interacting spinless fermions, being equivalent to the
anisotropic Heisenberg (XXZ) model for which the set
of Qi has been established [13,14]. We show that ρGGE as
generated only by local integrals of motion Qi doesn’t
exhaust all generic stationary states in the metallic (easy
plane) regime. Instead, there are cases for which one should
lift the requirement of locality of the conserved quantities
and allow also for quasilocal integrals of motion [15,16]. In
this Letter we call them non-GGE states, however we stress
that these states can be viewed also as “extended GGE,”
where the extension concerns the locality of operators.
Such operators have the parity opposite to local ones Qi.
We identify one of such quasilocal quantities as the time-
averaged particle current operator and we construct as well
as verify it explicitly.
It has been well recognized that integrable systems in

spite of interaction reveal anomalous transport properties at
finite inverse temperatures β ¼ 1=T, e.g., the dissipation-
less particle current. This property is manifested by a
nonvanishing charge stiffnessDðβ < ∞Þ [17–20], which in

turn is bounded from below by the local conservation laws
via the Mazur bound [19,21]. The dissipationless transport
and the relaxation towards GGE are probably the most
prominent hallmarks of integrability, still they have been
studied independently of each other so far. While it has
been clear that in certain regimes the standard Mazur bound
with only local Qi does not exhaust the phenomenon of
dissipationless transport and Dðβ < ∞Þ > 0 [19] we show
in this Letter that GGE should be extended by taking into
account quasilocal conserved quantities of different parity,
in particular the time-averaged current, which saturate
Dðβ → ∞Þ within the Mazur bound.
We study a prototype one-dimensional (1D) model of

interacting particles, the tight-binding model of spinless
fermions on L sites at half filling (with N ¼ L=2 particles)
and with periodic boundary conditions [22–25],

HðtÞ ¼ −th
XL
j¼1

ðeiϕðtÞc†jþ1cj þ H:c:Þ þ V
XL
j¼1

~nj ~njþ1; ð1Þ

where nj ¼ c†jcj, ~nj ¼ nj − 1=2, th is the hopping integral
and V is the repulsive interaction on nearest neighbors. The
model (1) is equivalent to the anisotropic Heisenberg
(XXZ) model with the exchange interaction 2th and the
anisotropy parameter Δ ¼ V=2th. However, we stay within
the fermionic representation, where the phase ϕðtÞ has a
clear physical meaning: it represents the time-dependent
magnetic flux which induces the electric field
FðtÞ ¼ −∂tϕðtÞ. Further on we use ℏ ¼ kB ¼ 1 and units
in which th ¼ 1. We consider here the metallic (easy–
plane) regime V < 2 (Δ < 1) where the system exhibits a
ballistic particle (spin) transport at T > 0 [18–20,26–33].
The Mazur lower bound on DðT > 0Þ vanishes at half

filling [19,34] and it remains a challenging problem to
explain whyDðT > 0Þ stays nonzero. Here, we explore the
relations between the conservation laws, the origin of finite
DðT > 0Þ and the relaxation towards a non-GGE state and
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show that a finite DðT > 0Þ emerges within an extended
GGE state. In our studies we use the standard particle
current J ¼ P

jðieiϕðtÞc†jþ1cj þ H:c:Þ as well a less
common current with a correlated hopping to next-nearest
neighbors J0 ¼ P

jðie2iϕðtÞc†jþ2 ~njþ1cj þ H:c:Þ. The central
point in our reasoning is the particle-hole (parity) trans-
formation,

ci → ð−1Þic†i ; ð2Þ

which (for ϕ ¼ 0) does not alter the Hamiltonian H → H
(at half filling) nor the local conserved quantities Qi → Qi
[19] but reverses the currents J → −J and J0 → −J0, hence
JðJ0Þ and Qi have different parities.
We start with numerical studies of a quantum quench

which generates a non-GGE steady state. We consider a
system which for t < 0 is either in the ground state or in the
equilibrium canonical or microcanonical state [35]. In the
latter case we generate a state ρð0Þ ¼ jΨð0ÞihΨð0Þj for
the target energy E0 ¼ hΨð0ÞjHð0ÞjΨð0Þi and with a small
energy uncertainty δ2E0 ¼ hΨð0Þj½Hð0Þ − E0�2jΨð0Þi as
discussed in Refs. [36,37]. The time evolution shown in
Fig. 1 has been obtained by the Lanczos propagation
method [36–38].
At t ¼ 0 the magnetic flux is suddenly decreased from

the initial value ϕð0Þ ¼ ϕ0 > 0 to ϕðt > 0Þ ¼ 0. Such a
quench is equivalent to a pulse of the electric field FðtÞ ¼
ϕ0δðtÞ hence it generates the particle current≠ 0. As shown
in Fig. 1 this quench induces also hJ0ðtÞi ≠ 0; however, the
latter quantity increases gradually in contrast to the
instantaneous generation of hJðt > 0Þi. Both currents reach
for t → ∞ finite steady values, clearly visible in Fig. 1,
being the signature of dissipationless transport. Still the
residual values hJi ≠ 0 and hJ0i ≠ 0 cannot be explained
within the GGE scenario since TrfρGGEJg ¼
TrfρGGEJ0g ¼ 0 due to different symmetries under par-
ticle–hole transformation at half filling [19].
The first objective of this Letter is to establish the

symmetry decomposed time-averaged density matrix

ρ̄ ¼ lim
τ→∞

1

τ

Z
τ

0

dtρðtÞ ¼ ρ̄e þ ρ̄o; ð3Þ

where ρ̄o and ρ̄e are odd and even under the transformation
(2), respectively. Since Trfρ̄Jg ¼ Trfρ̄oJg the odd com-
ponent of the density matrix ρ̄o is essential for the non-
vanishing current hJðt > 0Þi, while this component is
missing in ρGGE. At this stage it is instructive to recall
the linear-response (LR) results

hJðtÞi ¼ L
Z

∞

−∞
dωe−iωtFðωÞσðωÞ; ð4Þ

where the optical conductivity σðωÞ consists of the regular
and the ballistic parts with the latter one determined by the
charge stiffness D: σbalðωÞ ¼ 2Di=ðωþ i0þÞ. The quench
of flux induces an electric field FðωÞ ¼ ϕ0=ð2πÞ and the
regular (dissipative) part of conductivity becomes irrelevant
in the long-time regime. Then we get within the LR, i.e., for
ϕ0 ≪ 1,

lim
t→∞

hJðtÞi ¼ 2LDϕ0: ð5Þ

An important message following from LR, Eq. (5), is that
the non-GGE component of the density matrix has to
contain contributions that are linear in ϕ0 and, therefore,
can be singled out already within the first-order perturba-
tion expansion in ϕ0. The unperturbed Hamiltonian H0 ¼
Hðt < 0Þ is given by Eq. (1) with ϕðtÞ replaced by ϕ0,
while the perturbation reads H0ðtÞ ¼ HðtÞ −H0 ¼
ðϕ0 − ϕðtÞÞJ0, where J0 ¼ Jðt < 0Þ, so that H0ðt > 0Þ ¼
ϕ0J0. For the sake of clarity all quantities obtained with
the flux ϕ0 will be marked with a label 0, in particular the
eigenvalues Em0 and the eigenvectors jm0i of H0. The
degeneracy of energy levels plays an important role and
should not be neglected. Hence, we diagonalize the current
operator in each subspace spanned by degenerate eigen-
states and take the eigenvectors of J as the basis vectors of
this subspace, i.e., hmjJjni ∝ δmn if Em ¼ En (within a
subspace only).
We assume that the system is initially in a thermal sate,

i.e., ρ0 ¼
P

mpm0jm0ihm0j with pm0 ¼ expð−βEm0Þ=P
n expð−βEn0Þ. Then, in the Schrödinger picture one

obtains

ρðt > 0Þ ¼
X
m

pm0e−iH0tUðtÞjm0ihm0jU†ðtÞeiH0t;

Uðt > 0Þ ¼ Tt exp

�
−i

Z
t

0

dt0H0
Iðt0Þ

�
; ð6Þ

where H0
Iðt0Þ is the perturbation in the interaction picture.

Our aim is to explicitly express ρ̄ within the LR to the
quench ϕ0. A straightforward calculation of Eqs. (3), (6) to
first order in ϕ0 yields
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FIG. 1 (color online). Time dependence of hJi and 4hJ0i after
quenching the flux at t ¼ 0 for L ¼ 26 and V ¼ 1. (a) The
system is initially in equilibrium microcanonical state with
β ¼ 0.35 while after the quench it has effective β ¼ 0.15.
(b) The system is in the ground state and the flux is quenched
from ϕ0 ¼ π=2 to 0.
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ρ̄≃ ρ0 þ ϕ0

X
Em0≠En0

pn0 − pm0

En0 − Em0

hm0jJ0jn0ijm0ihn0j: ð7Þ

We should also take into account the change of current
operator due to flux; hence,

J ¼ Jðt > 0Þ ¼ J0 − ϕ0Hk
0; ð8Þ

where Hk
0 is the kinetic part of H0, Eq. (1). Using Eqs. (7),

(8), (5) one then restores the LR result for the equilibrium
charge stiffness [18,39],

D ¼ 1

2L

�
−hHk

0i þ
X

Em0≠En0

pm0 − pn0

Em0 − En0
jhm0jJ0jn0ij2

�
:

ð9Þ
Equation (7) does not yet accomplish our aim of decom-
posing ρ̄ into odd and even parts with respect to (2) after the
quench ϕðt > 0Þ ¼ 0. We achieve this by using again the
first-order perturbation theory for H0 ¼ H − ϕ0J and
J0 ¼ J þ ϕ0Hk, where now H;Hk, and J are the operators
after the quench, i.e., at ϕ ¼ 0. Substituting

En0 ¼ En − ϕ0hnjJjni;

jn0i ¼ jni − ϕ0

X
m∶Em≠En

hmjJjni
En − Em

jmi ð10Þ

into Eq. (7), and assuming that there is no particle current in
the initial thermal state, we finally obtain

ρ̄ ¼
X
n

pnjnihnjð1þ βϕ0J̄Þ; ð11Þ

where J̄ is the time-averaged steady-current operator,

J̄ ¼ lim
τ→∞

1

τ

Z
τ

0

dteiHtJe−iHt ¼
X
n

hnjJjnijnihnj: ð12Þ

The LR results [Eq. (5)] are immediately restored; however,
this time with the alternative form of the charge stiffness but
equivalent for β < ∞ and in the thermodynamic limit [19]

D ¼ β

2L

X
n

pnhnjJjni2: ð13Þ

By definition J̄ is an integral of motion ½H; J̄� ¼ 0. It is
important to note that TrJ̄2=N ∝ L, where N ¼ Tr1 is the
dimension of the Hilbert space, already implies that J̄ is a
quasilocal quantity. Since at β → 0,

1

N
TrJ̄2 ¼ 2L ~D; where ~D ¼ lim

β→0
DðβÞ=β; ð14Þ

the quasilocal character of J̄ is consistent with the well-
established fact that the charge stiffness is an intensive
quantity.

We now turn to the question of whether ρ̄ is compatible
with ρGGE and the answer is clearly negative. A necessary
and a sufficient condition for such compatibility, to leading
order in the quench ϕ0, would be a decomposition in terms
of local conserved Qi,

J̄ ¼
X
i

αiQi; ð15Þ

holding for some set of αi. Assuming that TrfQiQjg ∝ δij
we can employ the inequality

TrfðJ̄ −
X
i

aiQiÞ2g ≥ 0; ð16Þ

which holds for any ai and becomes an equality only for the
GGE state with ai ¼ αi. Now we can follow original steps
by Mazur [21]. We minimize the lhs of Eq. (16) with
respect to ai,

ai ¼
TrfJ̄Qig
TrfQ2

i g
¼ TrfJQig

TrfQ2
i g

; ð17Þ

and substitute this result in (16) to obtain the Mazur
inequality for β → 0,

TrfJ̄2g ≥
X
i

TrfJQig2
TrfQ2

i g
; ð18Þ

which is the Mazur bound on charge stiffness at T → ∞
[see Eq. (14)]. Since this inequality turns into equality for
GGE states, so should the Mazur bound. In other words
relaxation towards GGE is possible provided the Mazur
bound saturates the charge stiffness.This relation holds for
an arbitrary filling N=L. In particular for N=L ¼ 1=2 one
finds TrðQiJÞ ¼ 0 due to the symmetry (2); hence, the rhs
of (18) vanishes, and our quenched dynamics does not relax
to GGE.
As has been shown in Refs. [15,16], another set of

nonlocal, but quasilocal conserved, Hermitian operators
fQðφÞg exists for a dense set of commensurate interactions
Δ ¼ cosðπl=mÞ, with l; m integers, densely covering the
range jVj < 2. They are all odd under (2),QðφÞ → −QðφÞ.
Quasilocality implies linear extensivity TrfQðφÞ2g=
N ∝ L, similarly as for the local conserved operators
Qi, while TrfJQðφÞg=ðLN Þ ¼ const, making them suit-
able for implementing the Mazur bound. For
Δ ¼ cosðπ=mÞ for which T → ∞ limit of the Bethe ansatz
result [26] is available it has been shown [16] to agree
precisely with the Mazur bound, so one may conjecture that
the latter is now indeed saturated. Hence our argument
(15)–(18) can be used to argue that the complete time-
averaged current can be expressed in terms of an integral,
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J̄ ¼
Z
Dm

d2φfðφÞQðφÞ; ð19Þ

where fðφÞ ¼ cm=j sinφj4 for a suitable constant cm and
Dm is a vertical strip in the complex plane with
jReφ − π=2j < π=ð2mÞ. We refer to [40] for a detailed
derivation of Eq. (19) and the function fðφÞ. After
straightforward calculation, again using the notation and
machinery of [16], one arrives at the explicit matrix-
product expression for J̄ ¼ −iðJþ − J†þÞ in terms of local
operators,

Jþ ¼
X
j

X
r≥2

JðrÞj ; ð20Þ

with

JðrÞ1 ¼
Xf0;z;�g

s2;…;sr−1

gs2…sr−1ðBs2 � � �Bsr−1Þ11σ−1 σs22 � � � σsr−1r−1σ
þ
r ;

gs2…sr−1≔
XNþfsig

j¼0

�
Nþfsig

j

�
Ijþ1

2
N zfsig; ð21Þ

whereN sfsig denotes the number of indices in the set fsig
having a value s. Here Ik≔

R
Dm

d2φfðφÞðcotφÞ2k are
elementary integrals which can be evaluated as

Ik¼−
2π

mð2kþ1Þðsinπ=mÞ2kþ2

X2kþ1

j¼0

�
2kþ1

j

�
ð−1Þj

×ðcosπ=mÞ2kþ1−jfsinc½πðjþ1Þ=m�−sinc½πðj−1Þ=m�g;

and Ikþ1=2 ¼ 0 for k integer. The coefficient of Eq. (21)
ðBs2 � � �Bsr−1Þ11 is the (1,1) component of a product of
ðm − 1Þ × ðm − 1Þ matrices Bs, related to a modified Lax
operator [16],

B0
j;k¼ cosðπjl=mÞδj;k; Bz

j;k¼−sinðπjl=mÞδj;k;
B−
j;k¼ sinðπkl=mÞδjþ1;k; Bþ

j;k¼−sinðπjl=mÞδj;kþ1: ð22Þ

Pauli matrices σsj are related to fermion operators via
Jordan-Wigner transformation cj ¼ ðQj−1

i¼1 σ
z
i Þσ−j . The

result (21) is derived in the limit L → ∞ and is valid up
to corrections of order Oð1=LÞ for a finite periodic ring.
Explicitly, J̄ to all terms up to order four (r ≤ 4) reads

J̄ ¼ ~Dð8J þ 2VJ0Þ þ
X
j

ðiκc†jþ3cj þ iκ0c†jþ3c
†
jþ2cjþ1cj

þ iκ″c†jþ3 ~njþ2 ~njþ1cj þ H:c:Þ þ…: ð23Þ

For example, for V ¼ 1, (Δ ¼ cosðπ=3Þ), one has explicitly

~D ¼ 1

8
−
3

ffiffiffi
3

p

32π
; κ ¼ 1

4
−
9

ffiffiffi
3

p

16π
; κ0 ¼ 9

ffiffiffi
3

p

8π
− 1;

ð24Þ
while κ″ ¼ ~DV2=16 in general.
The above analytical results are nicely corroborated by

exact numerical simulations in finite systems shown in
Fig. 2. From Eq. (23) one finds that the ratio of two currents
should be given as Trfρ̄J0g=Trfρ̄Jg ¼ V=4 as confirmed in
Fig. 2(b). Here, the tiny deviations from 1=4 are presum-
ably due to oversimplified (linear or parabolic) fitting
functions. Furthermore, one can define the stiffness with
respect to current J0 as D0 ¼ hβJ̄02i=ð2LÞ. Formula (23)
immediately implies that J̄0 ¼ ðV=4ÞJ̄, and so the two
stiffnesses should have a simple ratio D0=D ¼ ðV=4Þ2 [see
Fig. 2(a)].
In conclusion, we have proposed a class of global

quantum quench dynamics of integrable spin chains for
which the state at asymptotic times does not relax to GGE.
We argue that, at least for weak quenches where linear
response theory is applicable, the validity of GGE ensemble
is in one-to-one correspondence with the saturation of the
Mazur bound expressed in terms of strictly local conserved
operators. However, if one extends the GGE ensemble by
including the quasilocal conserved operators from the
opposite parity sector—having linearly extensive Hilbert-
Schmidt norm—then the latter can be used to describe
exactly the steady state density operator after the quench.
Our theory has been demonstrated in the one-dimensional
model of interacting spinless fermions (XXZ spin model)
within the metallic regime.
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FIG. 2 (color online). a) D0=D vs 1=L, where D0 is the stiffness
related with J0. b) hJi=hJ0i obtained for ρ̄, Eq. (11), for β → 0.
Horizontal lines show analytical results. Exact diagonalization
has been carried out for V ¼ 1 with ϕ ¼ π=L and 2π=L for even
and odd N, respectively.
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It should be noted that our results are expected to have
further implications on other relevant quantities of inte-
grable systems besides the charge stiffness. The flux-
quench-induced steady current hJ̄i ¼ 2

P
k sinðkÞhn̄ki ≠ 0

is reflected into the fermion momentum-distribution func-
tion hn̄ki, which also does not comply to the standard GGE.
The latter quantity is the one typically measured in cold-
atom experiments [41,42] and most frequently studied in
connection with the GGE concept [5,8,10]. The inclusion
of the quasilocal conserved quantity J̄ fully fixes the steady
state hn̄ki within our quench protocol via extended GGE
form Eq. (11). It is still tempting to construct and consider
further (presumably conserved) quantities from the same
polarity sector, which would fix this and related quantities
for an arbitrary quench.
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