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Quantum measurement unavoidably disturbs the state of a quantum system if any information about the
system is extracted. Recently, the concept of reversing quantum measurement has been introduced and has
attracted much attention. Numerous efforts have thus been devoted to understanding the fundamental
relation of the amount of information obtained by measurement to either state disturbance or reversibility.
Here, we experimentally prove the trade-off relations in quantum measurement with respect to both state
disturbance and reversibility. By demonstrating the quantitative bound of the trade-off relations, we realize
an optimal measurement for estimating quantum systems with minimum disturbance and maximum
reversibility. Our results offer fundamental insights on quantum measurement and practical guidelines for
implementing various quantum information protocols.
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Quantum measurement changes the state of a system to
another if it provides any information about the system [1,2].
This intriguing feature of quantum mechanics is linked to
fundamental quantum properties, such as the uncertainty
principleand theno-cloning theorem[3,4]. It hasbeenwidely
believed that the more information is extracted by measure-
ment, themoredisturbed the systemis.This implies that there
exists a fundamental trade-off relationbetween theamountof
informationobtainedbymeasurement and the degree of state
disturbance, and it has been the subject of extensive theo-
retical studies [5–11]. On the other hand, it has recently been
reported that quantum measurement may be reversed, if the
interaction between the system and the measurement appa-
ratus is weak [12,13]. It has been shown that reversibility,
defined by the success probability of reversing a quantum
measurement, decreases as the amount of information
obtained increases [14]. In this context, the theoretical bound
between information gain and reversibility has been recently
derived [14]. Note that quantum measurement reversal has
been shown to have important applications in quantum
information processing [15–18].
In this Letter, we demonstrate trade-off relations in

quantum measurement for discrete high-dimensional quan-
tum systems. To the best of our knowledge, our result is the
first experimental proof of the information bound with
respect to both state disturbance and reversibility in a
discrete high-dimensional quantum system, while previous
studies have focused separately on disturbance [19–21] or
reversibility [22,23] in qubit systems. Furthermore, we
realize an optimal measurement for estimating discrete
high-dimensional systems with minimum disturbance and
maximum reversibility. Specifically, we show that any
measurement inducing minimal disturbance is also max-
imally reversible, while the converse is not true. Moreover,

we show that, for optimally estimating a high-dimensional
quantum state, both the choice of measurement and the
guessing strategy are crucial [14]. This is in contrast to
qubit systems in which the maximum reversibility can
always be achieved regardless of the measurement per-
formed if the guessing strategy is optimal. For a continuous
variable system, the bound between information gain and
state disturbance has so far been demonstrated for coherent
states [24].
Consider the measurement process for estimating a

quantum state. An arbitrary pure initial state jψi, i.e., qudit,
is prepared in the d-dimensional Hilbert space. Here, we
assume that we do not have any prior information about the
state. We then perform a measurement, aiming to estimate
jψi. A measurement can be described by a set of operators
M̂r, satisfying the completeness relation

P
N
r¼1 M̂

†
rM̂r ¼ 1,

where 1 is an identity and r ¼ 1;…; N corresponds to the
measurement outcomes. After the measurement, jψi
becomes jψ ri ¼ M̂rjψi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ jM̂†

rM̂rjψi
q

.

The information obtained through the measurement can
be quantified by the mean estimation fidelity G [5]. When
the measurement outcome is r, we guess that jψi was jϕri.
Then, the quality of the guess can be assessed by the
overlap jhψ jϕrij2. By averaging jhψ jϕrij2 over all possible
outcomes r for all the pure initial states jψi, we can evaluate
G ¼ R

dψ
P

N
r¼1 hψ jM̂†

rM̂rjψijhψ jϕrij2, where 1=d ≤ G ≤
2=ðdþ 1Þ and G is determined by both M̂r and the
guessing strategy to choose jϕri.
The state disturbance can be quantified by the mean

operation fidelity, evaluated by averaging jhψ jψ rij2 for all
outcomes r, as F ¼ R

dψ
P

N
r¼1 jhψ jM̂rjψij2, where 1=d ≤

F ≤ 1 [5]. The general measurement process is illustrated
in Fig. 1(a).

PRL 113, 020504 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
11 JULY 2014

0031-9007=14=113(2)=020504(5) 020504-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.020504
http://dx.doi.org/10.1103/PhysRevLett.113.020504
http://dx.doi.org/10.1103/PhysRevLett.113.020504
http://dx.doi.org/10.1103/PhysRevLett.113.020504


We now introduce the reversing operation of M̂r, which
can restore jψi from jψ ri. The reversing operator R̂r;0 is
defined by R̂r;0M̂rjψi ¼ ηrjψi, with a nonzero complex
variable ηr. The success probability of the reversing
operation is PrevðrÞ ¼ jηrj2 [13]. R̂r;0 comprises a complete
set with R̂r;1,

P
1
l¼0 R̂

†
r;lR̂r;l ¼ 1. The general measurement

and reversing process is illustrated in Fig. 1(b). The
reversibility is defined as the total reversal probability over
all the outcomes r, Prev ¼

P
N
r¼1 PrevðrÞ [14].

Let us now consider the trade-off relations betweenG, F,
and Prev. The trade-off relation betweenG and F for a qudit
is known as [5]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F−

1

dþ1

r
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G−

1

dþ1

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−1Þ

�
2

dþ1
−G

�s
: ð1Þ

As it provides the fundamental bound of state disturbance
for a given information gain, the measurement saturating
this inequality is known as the minimum disturbance
measurement (MDM) [19–21,24]. Likewise, the trade-off
relation between G and Prev is given as [14]

dðdþ 1ÞGþ ðd − 1ÞPrev ≤ 2d; ð2Þ

providing the quantitative bound of the reversibility for a
given information gain, which is fundamentally different
from Eq. (1). We will call the measurement saturating this
inequality the maximum reversibility measurement (XRM).
Let us now analyze and compare the conditions of MDM

and XRM. An arbitrary measurement operator can be
represented as M̂r ¼

P
d−1
i¼0 λ

r
i V̂rjωr

i ihωr
i jŴr [5], where

λr0 ≥ � � � ≥ λrd−1 ≥ 0 and jωr
i i are their corresponding

eigenvectors. Here, V̂r and Ŵr are unitary operators.

Vectors vi ≡ ðλ1i ;…; λNi Þ for i ¼ 0;…; d − 1 can be defined
to characterize a set of complete measurement operators
M̂r. The MDM set can be obtained if and only if all vi
are collinear and jv1j ¼ � � � ¼ jvd−1j [5]. On the other
hand, the condition for XRM is different and given as
M̂†

rM̂r ¼ arjωr
0ihωr

0j þ br1, with non-negative parameters
ar, br [14].
We note here two remarkable observations. First, the

maximal reversibility is a necessary condition for the
minimal disturbance. We can prove this as follows.
Since λri are arranged in a decreasing order, the MDM
condition jv1j ¼ � � � ¼ jvd−1jmeans λr1 ¼ � � � ¼ λrd−1 for all
r. Thus, M̂†

rM̂r ¼
P

d−1
i¼0 ðλri Þ2jωr

i ihωr
i j ¼ fðλr0Þ2 − ðλr1Þ2g×

jωr
0ihωr

0j þ ðλr1Þ21 so that it satisfies the XRM condition.
Therefore, all MDMs are XRMs, but the converse is not
true. Second, all the operator sets in two-level systems
satisfy the XRM condition, meaning that Eq. (2) becomes
an equality. Hence, if we adopt the optimal guessing
strategy, we can always achieve the maximal reversibility.
However, this is not true for the dimensions higher than two
(d > 2), so the choice of the measurement operator set, as
well as the guessing strategy, becomes significant to obtain
maximal reversibility.
To experimentally demonstrate the above observations,

we examine and verify the fundamental quantitative bounds
of theG − F andG − Prev trade-off relations by performing
a quantum measurement on a photonic qutrit system. We
also demonstrate the implementation of an optimal meas-
urement for estimating a quantum state with minimal
disturbance and maximal reversibility. In particular, we

consider three cases: (i) M̂ð1Þ
r satisfying both the MDM and

XRM conditions, (ii) M̂ð2Þ
r satisfying neither the MDM nor

the XRM condition, and (iii) M̂ð3Þ
r satisfying the XRM but

not the MDM condition.
The measurement operators satisfying both the MDM

and XRM conditions we consider are

M̂ð1Þ
r ¼ ffiffiffiffi

p
p jrihrj þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − p
2

r
ð1 − jrihrjÞ; ð3Þ

where 1=3 ≤ p ≤ 1 and r ¼ 0, 1, 2. Its reversing operator is
then given as

R̂ð1Þ
r;0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − p
2p

s
jrihrj þ ð1 − jrihrjÞ: ð4Þ

We assume here to take the optimal guessing strategy, where
the initial state is guessed as jϕri ¼ jri for the outcome r.
Then, we obtain G ¼ ð1þ pÞ=4, F ¼ ð3 − pÞ=4þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞ=2p

, and the G − F relation, F ¼ 1 −Gþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 6G − 8G2

p
[5], which saturates Eq. (1) for d ¼ 3.

In addition, Prev can be calculated from Eq. (4), as

FIG. 1 (color online). (a) Measurement fM̂rg is performed for
estimating an unknown initial state jψi. Information about jψi
can be extracted by making a guess according to the measurement
outcome r. However, jψi is inevitably disturbed by the meas-
urement. (b) The post-measurement state jψri can be probabilisti-
cally reversed to the initial state jψi by applying the reversing
measurement fR̂r;lg.
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Prev ¼ 3ð1 − pÞ=2. The relation betweenG and Prev is then
6Gþ Prev ¼ 3, which saturates Eq. (2) for d ¼ 3 [14].
On the other hand, the measurement operators satisfying

neither the MDM nor XRM conditions we consider are

M̂ð2Þ
0 ¼ j0ih0j þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
j1ih1j þ j2ih2j;

M̂ð2Þ
1 ¼ ffiffiffiffi

p
p j1ih1j; ð5Þ

where 0 ≤ p ≤ 1. The reversing operator of M̂ð2Þ
0 is

given by

R̂ð2Þ
0;0 ¼ j1ih1j þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
ðj0ih0j þ j2ih2jÞ: ð6Þ

Under the optimal guessing strategy, we obtain G ¼
ð4þ pÞ=12, F ¼ ð2þ ffiffiffiffiffiffiffiffiffiffiffi

1 − p
p Þ=3, Prev ¼ 1 − p. Their

corresponding relations F ¼ ð2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 12G

p Þ=3 and
12Gþ Prev ¼ 5 do not saturate Eqs. (1) and (2),
respectively.
The experimental setup is shown in Fig. 2. We exploit the

heralded single-photon qutrit state encoded in the single-
photon’s path (jai and jbi) and polarization (horizontal jHi
and vertical jVi). Among the four possible amplitudes, we
only excite the three amplitudes j0i≡ ja;Hi, j1i≡ ja; Vi,
and j2i≡ jb;Hi [25,26]. The single-photon source is
prepared by the spontaneous parametric down-conversion

process. A 6-mm-thick type I β-BaB2O4 crystal pumped
with a 405-nm diode laser generates a pair of 810-nm
signal-idler photons.
The experimental setup for implementing M̂r and R̂r;0

is shown in Fig. 2. The final state after the measurement,
Fig. 2(a), or the measurement reversal, Fig. 2(b), is analyzed

with quantum state tomography (QST). We implement M̂ð1Þ
r

and M̂ð2Þ
r for various measurement strengths to demonstrate

the trade-off relations. For M̂ð3Þ
r , we demonstrate an exam-

ple in which it is an XRM but not MDM.
To obtain G and F, it is necessary to measure the

outcomes for every pure state and average the results.
However, if the operation is trace preserving as in this case,
the mean fidelities can be calculated by averaging a few
pure states which comprise a symmetric basis set [20,28].
For a qutrit, the minimum required number of states is nine,
and we used the basis set introduced in Refs. [26,29]. This
basis set is also used for QST [26,30,31]. In addition, to
confirm that the initial state is retrieved after the reversing
operation is carried out, we perform quantum process
tomography (QPT) for analyzing the realized operation.
See Ref. [27] for the QPT result.
We first examine the trade-off relation between G and F

for M̂ð1Þ
r and M̂ð2Þ

r . Based on the measurement outcome, we
estimate the initial state by using a specific guessing
strategy. First, we employ the optimal guessing strategy
in which the initial state is guessed as the eigenstate

corresponding to the maximal eigenvalues of M̂ðkÞ
r

(k ¼ 1, 2, 3), i.e., jϕri ¼ jri [5,22]. The experimental
results are plotted in Fig. 3(a), which shows that the more
information is extracted by measurement, the more dis-
turbed the state is, irrespectively of the choice of the
measurement. The result also verifies the fundamental

bound in the G − F relation: While M̂ð1Þ
r saturates the G −

F bound, M̂ð2Þ
r does not. When a nonoptimal guessing

strategy is adopted [see Fig. 3(b)], the G − F bound cannot

be saturated even with M̂ð1Þ
r . This remains to be the case for

any nonoptimal guessing strategies.
Let us now investigate the trade-off relations between G

and Prev for M̂ð1Þ
r and M̂ð2Þ

r . The experimental results are
presented in Fig. 4(a) for the optimal guessing strategy and
in Fig. 4(b) for a nonoptimal one. The results show that Prev
decreases as G increases, which is the experimental proof
of the G − Prev trade-off relation in a high-dimensional
quantum system [14]. We also notice that the fundamental
bound for the G − Prev trade-off relation is only reachable

by M̂ð1Þ
r with the optimal guessing strategy: an experimen-

tal verification of the fact that any MDM operator satisfies
the XRM condition.
For the measurement which satisfies the XRM but not

the MDM condition, consider the following measurement
operator,

FIG. 2 (color online). An arbitrary single-photon qutrit state is
prepared by using half-wave plates (HWPs), quarter-wave plates
(QWPs), and a beam displacer. Quantum measurement and
measurement reversal are performed with additional partially
polarizing beam splitters (PPBSs), which fully transmit the
horizontally polarized photons but partially transmit the vertically
polarized photons. The operations of PPBS1, PPBS2, and PPBS3
can be described as X̂PPBS ¼ jHihHj þ ffiffi

t
p jVihVj with, respec-

tively, t ¼ p, ð1 − pÞ=2, and ð1 − pÞ=2p. By combining HWPs
and PPBSs, a general qutrit measurement operator Ŷ ¼ffiffiffiffi
t0

p j0ih0j þ ffiffiffiffi
t1

p j1ih1j þ ffiffiffiffi
t2

p j2ih2j can be implemented. Here,
(a) and (b) correspond to Figs. 1(a) and 1(b), respectively. G and
F are evaluated in (a), while Prev is obtained in (b). This figure

shows the experimental setup for implementing M̂ð1Þ
1 and R̂ð1Þ

1;0

described in Eqs. (3) and (4). For other measurement operators,
see [27].
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M̂ð3Þ
0 ¼

ffiffiffi
1

3

r
j0ih0j þ

ffiffiffi
1

6

r
ðj1ih1j þ j2ih2jÞ;

M̂ð3Þ
1 ¼

ffiffiffi
1

3

r
j1ih1j þ

ffiffiffi
1

6

r
ðj2ih2j þ j0ih0jÞ;

M̂ð3Þ
2 ¼

ffiffiffi
2

3

r
j2ih2j þ

ffiffiffi
1

2

r
ðj0ih0j þ j1ih1jÞ:

For M̂ð3Þ
r , the theoretical values for information gain,

disturbance, and reversibility can be evaluated assuming
ideal measurement, and they are calculated to be
Gth ¼ 13=36≃ 0.361, Fth ≃ 0.988, and Pth

rev ¼ 5=6≃
0.833. For Gth ¼ 0.361, the physically allowed maximum
disturbance calculated from Eq. (1) is F≃ 0.990. Thus,
M̂ð3Þ

r does not saturate the G − F trade-off relation,
but it saturates the G − Prev trade-off relation. The

experimentally obtained values are Gexp¼0.362�0.001,
Fexp ¼ 0.957� 0.002, and Pexp

rev ¼ 0.826� 0.003.
In summary, we have demonstrated the trade-off rela-

tions among information gain, disturbance, and reversibil-
ity in a qutrit system. To the best of our knowledge, this is
the first experimental demonstration of the trade-off rela-
tions in discrete variable systems beyond qubits. Our results
directly show that state disturbance and reversibility are
different. Furthermore, our work shows that both the proper
choice of measurement and the optimal guessing strategy
are important in achieving an optimal measurement for
high-dimensional quantum systems. This is in contrast to
qubit systems in which the maximum reversibility can
always be achieved regardless of the measurement per-
formed if the guessing strategy is optimal [23]. Our results
offer fundamental insights on quantum measurement and
practical guidelines for implementing and expanding
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FIG. 4 (color online). (a) When the optimal guessing strategy is adopted, the G − Prev trade-off relation is linear. The red line is the

ideal trade-off relation, 6Gþ Prev ¼ 3, for M̂ð1Þ
r . The blue line is the ideal trade-off relation, 12Gþ Prev ¼ 5, for M̂ð2Þ

r . (b) When the

same nonoptimal guessing strategy adopted in Fig. 3(b) is used, the result shows that Prev cannot reach the bound even with M̂ð1Þ
r . The

error bars represent the statistical error of �1 standard deviation.
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FIG. 3 (color online). An optimal guessing strategy is adopted for (a), and a nonoptimal guessing strategy is adopted for (b). In (b), the

state guessing strategy is as follows. For M̂ð1Þ
r , we guess the initial state to be ρðϕÞr ¼ pjrihrj þ ð1 − pÞ=2ð1 − jrihrjÞ. For M̂ð2Þ

r , we guess

the initial state to be ρðϕÞ0 ¼ pj0ih0j þ ð1 − pÞj1ih1j for r ¼ 0 and ρðϕÞ1 ¼ j1ih1j for r ¼ 1. The solid lines represent the ideal trade-off
relations for each operator set. Since the initial states used in experiment are not perfectly pure, the experimental data points lie slightly
below the ideal trade-off relations. The dashed lines represent the theoretical trade-off relations assuming a nonideal input state

ρðrÞ ¼ rjψihψ j þ ð1 − rÞ1=3. r ¼ 0.958 and r ¼ 0.969 for M̂ð1Þ
r and M̂ð2Þ

r , respectively. The error bars represent the statistical error of
�1 standard deviation.
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various quantum information protocols from qubit to high
dimensions.
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