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Boson sampling holds the potential to experimentally falsify the extended Church-Turing thesis. The
computational hardness of boson sampling, however, complicates the certification that an experimental
device yields correct results in the regime in which it outmatches classical computers. To certify a boson
sampler, one needs to verify quantum predictions and rule out models that yield these predictions without
true many-boson interference. We show that a semiclassical model for many-boson propagation reproduces
coarse-grained observables that are proposed as witnesses of boson sampling. A test based on Fourier
matrices is demonstrated to falsify physically plausible alternatives to coherent many-boson propagation.
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Introduction.—According to the extended Church-
Turing thesis (ECT), any efficient computation performed
by a physical device can also be performed efficiently
(with polynomial overhead) by a classical computer [1].
Since the advent of quantum computation—especially since
the formulation of Shor’s factoring algorithm [2,3]—the
ECT has been under attack, since quantum computers are
believed to outperform classical devices. Nevertheless,
the available empirical evidence is insufficient to dismiss
the ECT as a central dogma of computer science, and a
functional universal quantum computer is not likely to be
constructed in the foreseeable future.
A more approachable challenge to the ECT is provided

by boson sampling [4], which is harder than factoring,
while it can be solved efficiently by a quantum device of
modest capabilities: Only the coherent propagation of
many identical bosons through a multimode setup is
required. Experimental boson samplers with three photons
match the theoretically expected particle distribution [5–8].
Scaling to larger photon numbers is equally challenging
[9–11] as conceptually indispensable and may be alleviated
by alternative formulations of the problem that keep its
computational hardness [12,13].
The certification of an alleged boson sampler in the

regime of many particles is decisive for a serious and well-
founded attack on the ECT. Under the assumption that
quantum physics correctly describes the propagation of
arbitrarily many bosons, no certification issue arises at all,
and no traditionally trained physicist will question the
implications of boson sampling. But in a cross-disciplinary
context that encompasses computer science, mathematics,
and physics, the validity of quantum mechanics for truly
many interfering particles must be underpinned by unam-
biguous empirical evidence.
The very hardness of boson sampling makes such desir-

able certification a dilemma: On the one hand, it quickly
becomes unfeasible to compute the full boson-sampling

distribution classically, because the computational
expenses for a single transition probability as well as the
total number of events diverge exponentially in the number
of bosons n. On the other hand, onemaymeasure efficiently
predictable observables such as statistical bosonic signatures,
but such strategy leaves room for alternative models that
explain the observed behavior without the complex interfer-
ence of many bosons.
The persuasiveness of any certification protocol, therefore,

hinges on how convincingly it establishes the quantum
prediction for many bosons while ruling out alternative
models. Several efficient certification protocols have been
devised [14–17]; in particular, those recently put forward in
Refs. [16,17] discriminate the bosonic output against the
classical behavior of distinguishable particles. Here, we show
that certificates based on bosonic bunching are, nevertheless,
not stringent, because they (erroneously) qualify the output of
the efficient andphysically plausible semiclassicalmean-field
sampler (described below) as a functional boson sampler. We
devise an efficient and more stringent test based on highly
symmetric sampling matrices, which can conclusively rule
out the mean-field sampler and leaves no room for physically
plausible models that pass the test without invoking the
granular quantum interference of n bosons. By assessing
the gradual failure of the test due to inaccuracies, we establish
the experimental requirements for a certifiable device.
Sampling and certification.—Boson sampling consists

of simulating output events of n bosons prepared in the n
different input ports ~j ¼ ðj1;…; jnÞ out of the m ≫ n
modes of a scattering setup chosen randomly according to
the Haar measure on m ×m unitary matrices U. That is,
one draws output events ~k ¼ ðk1;…; knÞ with probability
PBð~j; ~k;UÞ, which corresponds to the permanent of the
submatrix of U that contains the rows and columns
matching the occupied input and output modes,

PBð~j; ~k;UÞ ¼ jpermanentðMÞj2; Ml;q ¼ Ujl;kq ; ð1Þ
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where additional combinatorial factors arise for multiply
occupied output modes. The permanent eludes polynomial
algorithms, which is inherited by the above sampling
problem: Physically speaking, the interference of n! many-
particle paths [18] governs each event [see Fig. 1(d)]. An
efficient classical algorithm for boson sampling would
imply extremely surprising consequences in computational
complexity theory [4].
To certify a boson sampler, one needs to verify pre-

dictions following from Eq. (1) and rule out models that
yield these predictions without true many-boson interfer-
ence [19]. A certification protocol needs to be discarded if it
accepts a series of events produced by a fraudulent device.
Relevant fraudulent devices are those based on a plausible
physical mechanism that can be simulated efficiently on a
classical computer.
The simplest way to efficiently sample from the space

of events ~k is uniform sampling [Fig. 1(a)], for which
each event is assigned the same probability [19], and no
information on the matrix U or the initial state ~j is
exploited. When U and ~j are provided, one can distinguish
boson sampling from a uniform sampler via, e.g., the
average number of particles in each output mode
[14,15,20], which can be computed for the boson sampler
without evaluating any permanent,

hn̂ki ¼
Xn
l¼1

jUjl;kj2: ð2Þ

Such single-particle observables reflect certain proper-
ties of the matrix U, but they are insensitive to many-
particle interference [18,20]. Therefore, single-particle
observables are also replicated by efficient classical sam-
pling, which can be implemented physically with distin-
guishable particles: Events are constructed by choosing
the output mode k for each particle prepared in jq with
probability pjq;k ¼ jUjq;kj2 [see Fig. 1(b)]. Single-particle
observables are, therefore, not sufficient to discriminate the
output of a boson sampler from a classical or a fermion
sampler [14,15,20].
To rule out the classical sampler, appropriate coincidence

and correlation observables were proposed in [16,17]: The
probability P1 to find an n-fold coincidence outcome

(without any multiply populated mode) is significantly
higher for distinguishable particles than for bosons due to
the bunching tendency of the latter. Similarly, one can leave
the space of random matrices and focus on structured
multimode setups with certain features: Bosonic clouding
[16] is the tendency for bosons to favor events with all
particles in the same half of the output array of a
continuous-time many-particle quantum walk. The two
proposed observables, however, do not unambiguously
verify the many-body coherence of the wave function,
since the statistical tendency to multiply populate output
states survives the deterioration of granular many-body
interference: In the mean-field sampler, the Wigner func-
tion [21] of the multimode Fock state is semiclassically
approximated by the macroscopically populated single-
particle states [see Fig. 1(c)]

jψi ¼ 1ffiffiffi
n

p
Xn
r¼1

eiθr jϕðinÞ
jr

i; ð3Þ

where the phases θr are undefined [22–24]. That is to say,
the mean field forms a thin belt on the high-dimensional
Bloch sphere [21], which evolves into

Ûjψi ¼ 1ffiffiffi
n

p
Xm
q¼1

�
jϕðoutÞ

q i
�Xn

r¼1

eiθrUjr;q

��
; ð4Þ

i.e., each particle occupies the output mode 1 ≤ q ≤ mwith

probability pmf
q ¼jhϕðoutÞ

q jÛjψij2¼ð1=nÞjPn
r¼1e

iθrUjr;qj2
[23]. The ensemble average consists of sampling over
random phases fθ1;…; θng, each setting then leaves the
particles (classically) correlated, since particles gather
where pmf

q is high.
The mean-field sampler is an efficiently evaluable and

physically plausible model: It contains those aspects of
many-boson dynamics that survive in the semiclassical
limit, in which fragile many-boson quantum interference
is lost, and it describes experiments with interfering
Bose-Einstein condensates [25,26]. It can be implemented
alternatively by sequentially preparing n particles in the
same initial state (3).
The mean-field sampler yields the expected mean

occupation (2), and, as shown in Fig. 2, it reproduces
the coincidences P1 and the clouding C predicted for
the boson sampler, Eq. (1). This clearly dismisses these
observables as witnesses of boson sampling. All coarse-
grained signatures that can be ascribed to bosonic statistics
are reproduced by mean-field sampling and cannot validate
the potential of a physical device to disprove the ECT.
Similar to the request that stringent tests of entanglement
rule out behavior borne by classical fields with random
correlated phases [27], a certification protocol for boson
sampling must include tests which address properties that
are not reproduced by the mean-field sampler.

(b) (d)(c)

?

(a)

FIG. 1 (color online). Sampling models. (a) Uniform sampler:
The scattering matrix and the initial state are ignored. (b) Classical
sampler: Distinguishable particles propagate independently with-
out interference. (c) Mean-field sampler: Macroscopic interfer-
ence and bosonic effects are incorporated. (d) Boson sampling
requires the interference of all n! paths of the n-boson wave
function.
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Certification via Fourier matrices.—A certification
scheme which rules out plausible physical models that
circumvent the evaluation of the permanent (1) needs to
be based on efficiently predictable, fine-grained observables
that are sensitive to granular n-body interference. Since event
probabilities subjugated by n-body interference are hard to
predict for unstructured random matrices, we leave the space
of computationally hard sampling problems and choose a
physically nontrivial, albeit efficiently predictable artificial
instance of boson sampling: The difficulty in the evaluation
of the permanent in Eq. (1) in comparison to the benevolent
determinant is due to the lack of symmetries. In order to
alleviate the complexity, we choose a symmetric sampling
matrix, the Fourier matrix of dimension m ¼ np,

UFou
l;q ¼ 1ffiffiffiffi

m
p exp

�
i
2πlq
m

�
: ð5Þ

Cyclic symmetry is imposed on the initial state,

~jcyc ¼ ð1; np−1 þ 1; 2np−1 þ 1;…; ðn − 1Þnp−1 þ 1Þ: ð6Þ

The cyclic symmetry remains intact during the scattering
process, which is reflected by the occurring output events:
Many events ~k are forbidden due to the suppression law for
Fourier matrices [18,24,29]:

mod

�Xn
l¼1

kl; n

�
≠ 0 ⇒ PBð~jcyc; ~k;UFouÞ ¼ 0; ð7Þ

which generalizes the Hong-Ou-Mandel effect: For
~j ¼ ð1; 2Þ, coincident output events with ~k ¼ ð1; 2Þ lead
to an odd sum in (7), two photons then never leave the
beam splitter in different modes [30].
The degree of violation of the suppression law is

quantified by V ¼ N forbidden=N runs, the ratio of actually
occurring events N forbidden that violate Eq. (7) to the total
number of events N runs. An ideal boson sampler features
V ¼ 0. The uniform, classical, and mean-field samplers do
not contain any mechanism to satisfy the suppression law,
which leads to a considerable violation: Only a fraction 1=n
of a priori possible events can occur in an accurate boson-
sampling experiment on the Fourier matrix (5) and the
initial state (6), while most events are forbidden [29]. For
uniform, classical, and mean-field sampling, one, therefore,
observes V ≈ ðn − 1Þ=n for large n (see Fig. 3), and the
probability that all events out of a sample of R events
accidentally fulfill the suppression law is 1=nR. The Fourier
matrix does not constitute a complex scenario, since
forbidden events can be predicted efficiently: In practice,
merely fractions of a second are required on a PC for
n ∼ 106. Notwithstanding, the observation of the suppres-
sion law in an experiment relies on granular n-particle
interference: All n! many-particle amplitudes need to
perfectly cancel, making the method stringent.
Can other models for many-body propagation fulfill

the suppression law without true many-boson interference
inherent to Eq. (1)? From the computational point of view,
there are efficient fraudulent models: The output of a mean-
field sampler can be checked against the suppression law,
and forbidden events are blocked (alternatively, for odd n,
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FIG. 3 (color online). Violation V of the suppression law (7) by
the classical (blue circles), mean-field (red squares), and mis-
aligned (brown diamonds) samplers for m ¼ n2. The classical
violation coincides with the ratio of suppressed events for the
boson sampler, ðn − 1Þ=n (black solid line). For small particle
numbers n ⪅ 4, the suppression law favors bunched states with
many particles in few modes, which alleviates the violation by the
mean-field sampler. For the misaligned data, we assume that one
particle out of n is distinguishable from the others; the total
violation is inferred from computing the probability for up to 104

distinct forbidden output states.
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FIG. 2 (color online). Bunching and clouding in different
sampling models. Classical distinguishable particles (blue
circles) are compared to the mean-field sampler (red squares)
and the boson-sampler (black diamonds). (a) Coincidence prob-
ability P1 for 100 Haar-random unitary matrices of dimension
m ¼ n2 with error bars that represent one standard deviation (the
mean-field sampler is hardly discernible from the boson sampler).
The lines are the combinatorially expected probabilities [16].
(b) Clouding for a discrete-time quantum walk of eight steps with
n particles starting in adjacent modes [20,28]. The probability C
that all particles be in the same half of the output array coincides
for the mean-field and boson samplers. The values for P1 and C
for the mean-field sampler are obtained by averaging numerically
over random phases.
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bosonic forbidden events are also forbidden for efficiently
simulatable fermions [18], although the latter do not
bunch). From a physical perspective, however, there is
no plausible mechanism that reads out the artificial sym-
metries (5) and (6) of the setup, establishes the suppression
law (7), and implements an ad hoc veto on the output states:
The suppression of an event is a collective nonlocal
property of the output state ~k, which requires a physical
mechanism that reigns over all particles in a concerted way.
Hence, fulfilling the suppression law qualifies as the
desired convincing “circumstantial evidence” [15] that an
alleged boson sampler is operational.
Deterioration due to inaccuracies.—Our criterion based

on the suppression law might appear too stringent in
practice: Deviations from the ideal can be expected due
to experimental inaccuracies, such as partial distinguish-
ability of the bosons [31–34] and deviations of the
scattering matrix U from the Fourier matrix (5). The
prediction of individual event probabilities in such scenario
is unfeasible for many particles [31], but the large fraction
ðn − 1Þ=n of forbidden events allows us to efficiently
estimate the violation V, as shown in the following.
A state of partially distinguishable bosons reads [31]

jΨinii ¼
Yn
r¼1

â†jr;tr jvaci; ð8Þ

where the distinguishing degree of freedom tr accounts
for, e.g., the mutual delay of injected photons. The states
jt1i;…; jtni are Gram-Schmidt orthogonalized to give the
orthonormal basis fjt1i; j~t2i…j~tnig, which permits us to
expand jΨinii into n! orthogonal terms [31–33],

jΨinii ¼ â†j1;t1
X2
d2¼1

X3
d3¼1

…
Xn
dn¼1

Yn
r¼2

cr;dr â
†
jr;~tr

jvaci: ð9Þ

Each summand describes a different degree of interference
capability: The term weighted by c2;1c3;1;…; cn;1 with
d2;…;n ¼ 1 describes indistinguishable bosons that interfere
perfectly and only give rise to nonforbidden events
(V ¼ 0). The term with dq ¼ q ð2 ≤ q ≤ nÞ describes
distinguishable particles, which induces V ≈ ðn − 1Þ=n.
Intermediate terms that describe neither fully distinguishable
nor fully indistinguishable particles give rise to bosonic
signatures such as bunching, but, in most cases, they do not
fulfill the suppression law and induce a violation of the
order ðn − 1Þ=n. Even when merely one out of n bosons is
distinguishable, the suppression law is strongly violated (see
brown diamonds in Fig. 3). The total distinguishability-
induced violation Vpartial is, therefore, bounded by the
weight of the perfectly indistinguishable term,

Vpartial ⪅
n − 1

n

�
1 −

Yn
q¼2

jcq;1j2
�
: ð10Þ

Another experimental limitation is that the desired
unitary transformation can be implemented only with

limited accuracy. The probability for a forbidden transition
~j → ~k is not described by a submatrix M of the Fourier
matrix UFou [see Eq. (5)], but by a matrix W with

Wl;q ¼ Ml;qð1þ δl;qÞ: ð11Þ

By expanding the permanent of W in powers of matrix
elements of δ to the first order, we can estimate

jpermanentðWÞj2 ≈ PapproxðδÞ≔
n × n!
mn jjδjj2; ð12Þ

where jjδjj≔hjδl;qjil;q is the average absolute value of
matrix elements of δ, which we assume to be much smaller
than unity. For small deviations, the probability for
nonforbidden events remains widely unaffected by δ,
and, circumventing the permanent, the violation can be
estimated as

Vdev ≈
n − 1

n
NeventsPapproxðδÞ ≈

form¼n2 ffiffiffi
e

p ðn − 1Þjjδjj2; ð13Þ

where Nevents ¼
�mþ n − 1

n

�
is the total number of

events. The estimate is confirmed numerically in Fig. 4
for n ¼ 3; 10, and m ¼ n2. Equation (13) also formalizes
the mild requirement on the accuracy of multimode
scattering matrices that feature the suppression
law. Since the two sources of deterioration are independent,
the total expected violation can be estimated as V total ≈
Vpartial þ Vdev.
Outlook.—The potential influence of a boson sampler

on the foundations of theoretical computer science is rather
formidable but so will be the requirements on convincing
evidence for its proper functionality. Therefore, high
exigency needs to be imposed on the falsification of
alternative models for many-particle behavior. We showed
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FIG. 4 (color online). Violation V for matrices described by
Eq. (11), for n ¼ 3; 10, and m ¼ n2. We compute the total
probability of 200 randomly chosen forbidden events for 400
different matrices δ for each value of the average deviation jjδjj.
Error bars represent one standard deviation; the dashed red and
solid blue lines show the estimate (13) for n ¼ 10 and n ¼ 3,
respectively, which breaks down when jjδjj is not smaller than
1=n. In order to observe the suppression law in the experiment,
the violation needs to be significantly smaller than ðn − 1Þ=n
(compare to Fig. 3).
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that coarse-grained criteria based on bosonic bunching or
clouding [16,17] are insufficient, since they are reproduced
by the semiclassical mean-field sampler [25,26].
A functional boson sampler will necessarily implement

any unitary sampling matrix that the user wishes for to
switch between different instances of the problem [35],
and we can focus on the special instance described by (5)
and (6) to assess many-particle interference. The verifica-
tion of (7) with three photons [36] and progress in
integrated waveguide techniques [37–39] feed the hope
that the suppression law (7) will be observed in more
complex setups in the near future. Within quantum
mechanics, there are two sources of deviation from the
ideal: Bosons can carry distinguishing degrees of freedom,
and the setup might not precisely match the Fourier matrix.
The deterioration induced by both effects can be estimated
efficiently.
Following the spirit of the falsification of local realism

[40], one may envisage a matrix similar to Eq. (5) but
with hidden symmetries, such that events are forbidden
according to an intricate rule that encodes the solution to a
computationally hard problem. While sampling should,
therefore, remain hard to perform, the output should be,
nevertheless, easy to verify (in the language of computa-
tional complexity, the problem encoded by the matrix is
in the complexity class NP [1]). Such—admittedly specu-
lative [4,15]—instance of asymmetric complexity may
offer an unquestionable computational criterion for the
certification of boson samplers and promote such devices
into powerful tools for algorithmic applications.
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