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The ability to uniquely identify a quantum state is integral to quantum science, but for nonorthogonal
states, quantum mechanics precludes deterministic, error-free discrimination. However, using the non-
deterministic protocol of unambiguous state discrimination enables the error-free differentiation of states,
at the cost of a lower frequency of success. We discriminate experimentally between nonorthogonal, high-
dimensional states encoded in single photons; our results range from dimension d ¼ 2 to d ¼ 14. We
quantify the performance of our method by comparing the total measured error rate to the theoretical rate
predicted by minimum-error state discrimination. For the chosen states, we find a lower error rate by more
than 1 standard deviation for dimensions up to d ¼ 12. This method will find immediate application in
high-dimensional implementations of quantum information protocols, such as quantum cryptography.
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Discriminating between different quantum states without
error is a fundamental requirement of quantum information
science. However, due to the nature of quantum mechanics,
only orthogonal states can be exactly discriminated without
error 100% of the time. In contrast, the discrimination of
nonorthogonal states requires a decrease in either detection
accuracy, using minimum-error state discrimination, or detec-
tion frequency, using unambiguous state discrimination.
Minimum-error state discrimination (MESD) always provides
information about the state, although the information may be
incorrect [1]. Conversely, unambiguous state discrimination
(USD) provides either the correct information about a detected
state or inconclusive information about the state [2–15].
High-dimensional quantum states are an important

resource for quantum information. In comparison to qubits,
the use of qudits, which are states belonging to a
d-dimensional space, provides access to a larger alphabet
and correspondingly higher information rates and a higher
tolerance to noise. The ability to unambiguously discrimi-
nate such states is thus of key importance, and successful
protocols that accomplish this task will extend the use of
these states in quantum information science. Examples of
such systems include the time degree of freedom and the
spatial light profile, or more specifically the orbital angular
momentum (OAM) degree of freedom, which we use in this
work [16–29]. High-dimensional USD is also potentially
relevant for pattern recognition in quantum and classical
regimes, as images typically contain very large numbers of
spatial modes and are nonorthogonal to one another [30].

The problem of unambiguous discrimination of qudit
states has received a great deal of attention [31–36]. USD
was first experimentally realized, with a classical light
source, to distinguish two nonorthogonal states in the
polarization degree of freedom [37]. A subsequent experi-
ment with a similar source extended this to distinguish three
states encoded in three-dimensional photon path information
[38]. USD has also been performed for two mixed polari-
zation states using a quantum dot single-photon source [39].
In this Letter, we discriminate unambiguously between

nonorthogonal quantum states encoded in single photons, in
dimensions ranging from d ¼ 2 to d ¼ 14. While USD
theoretically promises the unambiguous discrimination of
any set of states, real experimental situations always include
error sources, and perfect discrimination in an experimental
environment is challenging. Even with these unavoidable
errors, we show that our scheme successfully discriminates
between the chosen states and does so with lower error rates
than those predicted by MESD. We note that here we imple-
ment USD as a sequential measurement of all required
detection states. Using instead simultaneous detection, e.g.,
detection based on OAM sorter technology [40,41], would
allow unambiguous discrimination at the single-photon level.
To perfectly distinguish orthogonal states, one requires

projections onto the orthogonal state basis, giving d
measurement outcomes in a d-dimensional space. To
implement the USD protocol, which distinguishes non-
orthogonal states, one requires the introduction of an
additional measurement outcome—an inconclusive result
—into the procedure, providing dþ 1 measurement pos-
sibilities. One way to increase the number of measurement
outcomes is by introducing an ancillary dimension or
degree of freedom; orbital angular momentum lends itself
well to this treatment, as it provides an unlimited supply of
additional dimensions. The introduction of the inconclusive
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result enables the remaining measurement outcomes to be
orthogonalized [42]. The protocol then provides one of the
following: a correct state identification, in which case the
state is known with certainty, or an inconclusive result, in
which case no information is known about the state.
In this Letter, we choose d states in d dimensions that

have an equal overlap with each other; these are referred
to as equally probable, linearly independent, symmetrical
states and, compared to less symmetric states, have a
maximal discrimination probability [5,43]. See Fig. 1(a)
for an example in three dimensions. Note that all of these
states have only real amplitudes. The overlap between any
two states is then a function of the parameter θ, given by

hΨijΨji ¼
dcos2θ − 1

d − 1
; (1)

for i ≠ j. To ensure positive overlap between the input
states, the maximum value of θ is θmax ¼ cos−1

ffiffiffiffiffiffiffiffi
1=d

p
[43].

In the problem of USD, we must establish a set of
measurement states fjDiig to distinguish the set of input
states fjΨiig. To achieve this, for every state jΨii, we first
identify a preliminary measurement state jΨ⊥

i i; this prelimi-
nary state is orthogonal to all other states jΨji (for j ≠ i) but
has a nonzero overlap with jΨii. Because of this definition, a
detection with jΨ⊥

i ihΨ⊥
i j will unambiguously indicate that

the photon was in state jΨii. These d preliminary measure-
ment states fjΨ⊥

i ig, however, do not generally form an
orthonormal basis set. This can be achieved by extending the
preliminary measurement states to an ancillary dimension,
followed by normalization to obtain d measurement states
fjDiig. The basis set is completed by including an additional
state jDdþ1i orthogonal to all other measurement states, so
that the whole (dþ 1)-dimensional basis of measurement
states is fjDiig with hDijDji ¼ δij.
The probability of obtaining an inconclusive result

jhΨijDdþ1ij2 and the probability of correctly identifying
a state jhΨijDiij2 sum to unity, as the probability of an error
is by definition 0. The probability of an inconclusive result
is precisely the overlap between any two input states [3,5].

Thus, using Eq. (1), we can write the probabilities of
successful identification, erroneous identification, and
inconclusive result as

psuc ¼
d

d − 1
sin2θ; (2a)

perr ¼ 0; (2b)

pinc ¼
dcos2θ − 1

d − 1
: (2c)

Theoretical predictions of these values for states in three
dimensions are shown in Fig. 1(b).
We use the process outlined above to find the discrimi-

nation states for a range of input states in a range of
dimensions, and we use them to implement USD as a
sequential measurement on orbital angular momentum
states. Our experimental procedure is as follows. We
produce entangled photons by spontaneous parametric
down-conversion [44] in a 3-mm type-I β-barium borate
(BBO) crystal with a phase mismatch factor of approx-
imately ϕ ¼ −1. We pump the crystal with a 100-mW laser
at 405 nm. In each path, we image the plane of the BBO
crystal to a different section of a spatial light modulator
(SLM), allowing us to manipulate both the phase and the
amplitude of each photon’s mode with high fidelity. The
simplified experimental setup is shown in Fig. 2.
The photons produced from the BBO crystal are entangled

in their orbital angular momentum in the two-photon state
jψi ¼ P∞

l¼−∞ cljliA ⊗ j − liB, where jclj2 is the proba-
bility of finding photon A with OAM lℏ and photon B with
OAM −lℏ [45]. The SLM in our experiment performs a
number of functions in regard to this state: first, it allows
us to select a range of OAM values and explore a discrete
dimension space, and second, it allows us to equalize the
probabilities of detection, a process similar to entanglement
concentration [46]. Finally, in a procedure similar to that in
Refs. [21–23,26–28], the SLM, in combination with the
single-mode fibers, allows us to perform high-fidelity pro-
jective measurements on the signal and idler photons. By
displaying a hologram of the conjugate phase of a particular
mode, we convert the chosen state into the Gaussian mode,
which can then be coupled into a single-mode fiber.
The entanglement of the OAM degree of freedom allows

the use of remote state preparation [47,48], which enables
us to herald the presence of a range of single-photon states
jΨii. These heralded states are prepared by using one-half
of the SLM in combination with a single-mode fiber.
Consequently, the detection of a single photon in the first
arm collapses the photon in the other arm into the desired
state. The second path is then used to perform the state
discrimination measurements jDji on the heralded state
jΨii, and we measure the coincidences between the two
paths. In our experiment, as we use a single SLM, the
measurements on the signal and idler modes are performed
simultaneously. In this manner, the input states are prepared

FIG. 1 (color online). Vectors and probabilities in three dimen-
sions. (a) As the stateswe consider have real amplitudes, they can be
represented on a spherewhose axes are the amplitudes of each basis
vector. The vectors we choose to discriminate in dimension d ¼ 3,
fjΨiig with θ ≈ 33°, are shown in blue. Vectors perpendicular to
each pair (fjΨ⊥

i ig) are shown in red. (b) Theoretically calculated
probabilities of discrimination for the vectors shown in (a).
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at the same time as they are measured. However, identical
results would be obtained using two spatially separated
SLMs, where the preparation and measurement stages are
performed one after another. Our chosen method of
measurement does not limit the use of such states for tasks
in quantum information processing.
For a given dimension d, we measure all dþ 1 meas-

urement outcomes for each input state jΨii. We use our
measurements to calculate a quantity called the quantum
contrast, which is defined by the coincidence rates nor-
malized by the singles Qij ¼ Cij=ðSAiSBjtÞ; this accounts
for any variations in the quantum efficiency of the detection
and generation of particular states. Here, Cij is the number
of coincidence counts defined by an event in both detectors
within a time window of t ¼ 25 ns. The quantities SAi and
SBj represent the number of counts in path A (heralding the
preparation of jΨii) and B (measuring jDji), respectively.
We normalize this quantum contrast into probabilities using
Pij ¼ ðQij − 1Þ=PjðQij − 1Þ. The −1 term accounts for
the fact that two independent and uncorrelated sources will
have a quantum contrast equal to unity. An integration time
of 30 s was used for each measurement, and the maximal
coincidence count rate was approximately 350 Hz.
We have implemented our procedure for unambiguous

discrimination of states in high dimensions ranging from
d ¼ 2 to d ¼ 14 and with varying overlap between the
states. In Fig. 3, we show the unambiguous discrimination
of six states in d ¼ 6 dimensions.
Figure 3(a) shows the results at θ ¼ 40° of measuring all

fjΨiig states using all fjDjig measurements. The green

bars denote successful identifications, the red bars denote
erroneous identifications, and the blue bars denote incon-
clusive results. As the probabilities of successful identi-
fication greatly exceed the probabilities of erroneous
identification, it follows that each input state jΨii almost
always results in either correct detection by jDii or the
inconclusive outcome jD7i.
Figure 3(b) shows the results of measuring a specific

state, in this case, jΨ2i, using all fjDjig measurements, for
a range of angles θ. Each angle corresponds to a different
overlap between the fjΨiig states, as in Eq. (1). An angle of
0° corresponds to a complete overlap between the states and
hence a completely inconclusive result; the probability for
correct identification increases with θ, with, in principle,

FIG. 3 (color online). Experimental results for dimension
d ¼ 6. (a) Probabilities of detecting input states jΨii using
detection states jDji when θ ¼ 40°. (b) Probabilities as a function
of θ of identifying the state jΨ2i correctly (green points, jD2i),
incorrectly (red points, jD1i, jD3i, jD4i, jD5i, jD6i), or incon-
clusively (blue points, jD7i). The points represent experimental
data, while the solid lines represent theoretical values calculated
using Eq. (2). The points within the shaded area in (b) correspond
to the blue outlined box in (a). The uncertainties were calculated
using Gaussian error propagation, where the measured counts N
were assumed to have a standard deviation of

ffiffiffiffi
N

p
.

FIG. 2 (color online). Experimental setup. A pair of entangled
photons is produced in a BBO crystal. Arm A is used to prepare a
state jΨii, indicated by the purple box; arm B is used to perform a
measurement jDji, indicated by the orange box. Each measure-
ment is accomplished using an SLM and a single-mode fiber
(SMF). The holograms shown are representative of those used for
state preparation and measurement in dimension d ¼ 3.
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perfect identification at θ ≈ 66°. The solid lines indicate
theoretical predictions from Eq. (2); our experimental data
are in good agreement with these predictions.
While USD has the theoretical advantage of never

misidentifying a state, in practice this is not possible to
achieve. In experimental implementations, errors neces-
sarily occur due to finite detector efficiency and errors
caused by transformation optics. To evaluate the perfor-
mance of our measurements, we compare our experimen-
tally recorded errors to those theoretically predicted for the
MESD protocol. A significant advantage is found in the
case that the recorded errors for our scheme are smaller than
those produced in MESD.
Because of the equal overlap between our input states,

the minimum error rate for MESD in d dimensions [43,49]
reduces to

perr ≥
1

2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhΨijΨjij2

q
Þ; (3)

where the overlap hΨijΨji is given by Eq. (1). A violation
of this inequality indicates that USD provides less ambi-
guity in state identification than is theoretically possible
using MESD.
In Fig. 4, we compare this bound to the mean total error

rate observed using our method. To determine our error
rate, we first determine the error rate for a single input state
jΨii; this is the sum of all possible incorrect state
identifications. We then average over all input states
fjΨiig to obtain the mean total error rate.
Figure 4(a) shows the total error rate as a function of

angle for the d ¼ 6 case. The total error rate for angles up to
θ ¼ 30° is at least 1 standard deviation below the MESD
bound, demonstrating that our approach is particularly
successful for states with large overlap. The total error rate
exceeds the MESD bound at higher angles, where the states
have lower overlap and are closer to orthogonal. In this case,
the bound converges to 0, matching the theoretical prediction
for USD. Since the two schemes converge, it is inevitable
that the experimentally measured errors exceed the ideal
MESD curve at a sufficiently high angle.
Figure 4(b) shows the total error rate as a function

of dimension for a fixed overlap of 1=
ffiffiffi
2

p
between the

initial states. We choose a constant overlap so that the
MESD bound is equal in all dimensions [in this case,
ð1 − ffiffiffiffiffiffiffiffi

1=2
p Þ=2 ≈ 0.146]. To achieve the constant overlap,

the parameter θ must change with dimension [43]. The total
error rate for dimensions up to d ¼ 12 is below the MESD
bound by at least 1 standard deviation.
In dimensions d ≥ 13, the bound for MESD is success-

fully violated, but by less than 1 standard deviation. This
is due to two main factors. First, for all of these data, the
average measured probability of obtaining an error, i.e.,
measuring a state jΨiiwith an incorrect detection state jDji
(i∈fj; dþ 1g), is approximately 1%. As the dimension
increases, so too does the number of opportunities to
misidentify a state. Thus, the total error grows accordingly,

making it increasingly difficult to obtain a low total error.
Second, due to the limited spiral bandwidth in the down-
converted state, the probability amplitudes of the individual
OAM modes decrease as l increases. This limits the
coincidence rate, and thus increases the uncertainty of
the measurements, for high dimensions.
We have demonstrated USD via sequential measure-

ments to distinguish d nonorthogonal single-photon states
in d-dimensional Hilbert spaces. In a modified setup, our
method could be realized as a true positive operator-valued
measure (POVM) experiment in high dimensions. To
implement simultaneous measurement of the input states,
one would require a scheme that takes any of the d
nonorthogonal states and produces dþ 1 orthogonal out-
puts. Such a scheme is similar in concept to current mode
sorting technology that can, in principle, take d orthogonal
OAM input states and sort them into d orthogonal trans-
verse states [40,41]. Before using an OAM mode sorter, we

FIG. 4 (color online). Probability of error. (a) Mean total error
rate as a function of angle in dimension d ¼ 6. (b) Mean total
error rate as a function of dimension. Here, the angle θ is chosen
individually for each dimension such that the MESD bound is the
same in all dimensions. In both plots, the red line indicates the
theoretical minimum error rate predicted for MESD. The green
points denote error rates at least 1 standard deviation below this
limit, the orange points denote error rates whose uncertainties
extend above the limit, and the red points denote error rates above
the limit. The uncertainties are the standard deviations associated
with the mean values.
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would require an initial stage to convert the input states
into a (dþ 1)-dimensional basis. Such an experimental
implementation will be the focus of future work.
In our experiment, while experimental constraints prevent

completely error-free identification, we have shown that, for
a range of high-dimensional states, our method still provides
a lower error rate than minimum-error state discrimination.
With suitable improvements in SLM resolution, spiral
bandwidth production, and detector efficiency, this could
be increased to even higher dimensions. This method of state
discrimination will allow the use of high-dimensional non-
orthogonal states in quantum protocols, enabling secure
quantum communication with larger alphabets.
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