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We realize an open version of the Dicke model by coupling two hyperfine ground states using two
cavity-assisted Raman transitions. The interaction due to only one of the couplings is described by the
Tavis-Cummings model and we observe a normal mode splitting in the transmission around the
dispersively shifted cavity. With both couplings present the dynamics are described by the Dicke model
and we measure the onset of superradiant scattering into the cavity above a critical coupling strength.
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Ultracold atoms coupled to a high-finesse optical cavity
have become aversatile tool for studyingmany-body physics
in dissipative-driven systems [1]. For example, a theoretical
proposal [2] suggested the use of cavity-assisted Raman
transitions to realize an open version of the Dicke model [3]
in order to study the properties of the associated superradiant
phase transition [4,5]. Following this idea, the process of self-
organization [6–8] of a Bose-Einstein condensate coupled to
a high-finesse cavity has been mapped to the Dicke model
[9,10] and the corresponding phase transition has been
observed [9]. Together with subsequent work [11–14] this
experiment has in turn led to interesting theoretical studies
into the properties of the Dicke model [15–19] and the
dynamics of awider class of nonequilibriummodels [20–22].
However, mapping to the process of self-organization con-
strains the range of accessible parameter regimes. In contrast,
by implementing the original proposal [2] all parameters
of the Dicke model are independently tunable. In addition,
the original idea has been extended in ways which allow
the study of more complex many-body systems such as the
Lipkin-Meshkov-Glick model [23,24] and spin glasses
[25,26], as well as the effects of modulating the parameters
of the Dicke model [27–29]. Studies of the nonequilibrium
Dicke models as well as their extensions will profit from
the flexibility inherent in the original proposal.
In this letter, we realize an effective Dicke model using

two cavity-assisted Raman transitions. Coupling due to one
Raman transition alone creates a situation described by the
Tavis-Cummings model [30] and we measure the normal
mode splitting present in the transmission spectrum of the
cavity, which allows us to characterize the effective atom-
cavity coupling strength. With the second Raman coupling
present, the dynamics are governed by the Dicke model
and we observe the onset of superradiant scattering into the
cavity above a critical coupling.
Our experimental scheme follows closely the original

proposal [2], with a slightly altered level scheme, which

was recently considered for the case of a single atom [31].
The details of our experimental setup have been described
previously [32]. We trap N rubidium 87 atoms inside the
mode volume of a high finesse optical cavity and couple the
jF ¼ 1; mF ¼ 1i≡ j0i and jF ¼ 2; mF ¼ 2i≡ j1i hyper-
fine ground states via two cavity-assisted Raman transitions
as illustrated in Fig. 1. In order to have well separated
Zeeman states, we apply a magnetic field of approximately
−5.7 Gauss. At this field the j0i and j1i states are separated
by ω1 ¼ ωhf − 3ωZ, where ωhf ¼ 2π × 6.8347 GHz is
the hyperfine splitting of the ground state and ωZ ≈ 2π ×
4.0 MHz is the linear Zeeman shift [33]. The cavity has a

(a) (b)

FIG. 1 (color online). Schematic representation of the experi-
ment. (a) We trap N rubidium 87 atoms, indicated by the filled
ellipses, in a equal mixture of hyperfine states inside a high
finesse optical cavity. Two laser beams with Rabi frequencies Ωr
and Ωs, indicated by solid arrows, are far detuned from the
excited state but near resonant with the cavity-assisted Raman
transition, indicated by dashed arrows. (b) With only one beam
present, we probe the cavity transmission and observe a normal
mode splitting. (c) With both beams present, we observe emission
into the cavity above the critical coupling.
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finesse of 110 000 near 780 nm and 150 000 near 1560 nm.
The high finesse at 1560 nm allows us to stabilize the
length of the cavity, and create a deep intracavity optical
lattice, using light at 1556 nm. The resulting lattice used
to trap the atoms during the experiment has a waist of
70 μm and is actively stabilized to a trap depth of 230 μK.
Near 780 nm the interaction of the atoms with the cavity
is described in terms of the cavity QED parameters
ðg; κ; γÞ ¼ 2π × ð1.1; 0.07; 3.0Þ MHz, where 2g is the
single photon Rabi frequency for the jF ¼ 2; mF ¼ 2i to
jF0 ¼ 3; mF0 ¼ 3i cycling transition, and κ and γ are the
half-width-half-maximum linewidths of the cavity and
atomic transition respectively. Due to birefringence, the two
linear polarizationmodes of the cavity are split by 0.29MHz.
We align the magnetic field to one of the polarizations, so
that the two modes couple to π and ⊥ ¼ 1=

ffiffiffi
2

p ðσþ þ σ−Þ
transitions respectively, and that the one coupling to π
transitions has a higher resonance frequency. Two laser
beams with Rabi frequencies Ωr and Ωs are copropagating
perpendicular to the cavity optical axis and are linearly
polarized along the cavity axis, so that they couple to
⊥0 ¼ 1=

ffiffiffi
2

p ðσþ − σ−Þ transitions. Both beams have a waist
of 110ð10Þ μm at the position of the atoms.
Our experiments are performed in the dispersive regime,

where the cavity resonance frequency, ωc, is far detuned
from the atomic resonance frequency,ωa, byΔc¼ωc−ωa¼
−2π×127GHz. The frequencies of the laser beams are
given by

ωr ¼ ωc þ η − ωhf − ζ ð1Þ

and

ωs ¼ ωc þ ηþ ωhf þ ζ; ð2Þ

respectively, where both η and ζ are small frequency offsets
on the order of several megahertz. In this regime, there is a
small differential Stark shift,

ωdS ≈
1

6
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; ð3Þ

between the j1i and the j0i states that must be taken into
account for the experiments presented here. In Eq. (3)
and throughout this work we follow the convention that
Rabi frequencies are calculated from the dipole element
for the jF ¼ 2; mF ¼ 2i to jF0 ¼ 3; mF0 ¼ 3i cycling
transition [33].
As all detunings, Δc, Δr ¼ ðωr þ ω1Þ − ωa and

Δs ¼ ωs − ωa, are much larger then the hyperfine splittings
of the excited state manifold [33], the Raman rate for
transitions involving ⊥ and ⊥0 is negligible, as these
connect states with different nuclear spin components.
Only two Raman transitions, involving π and ⊥0, are near
to Raman resonance. The first takes the atom from the j0i to

the j1i state via absorption of a photon from the laser beam
labeled by s and emission into the cavity (and its reverse),
while the second takes the atom from the j0i to the j1i state
via absorption of a photon from the cavity and emission
into the laser beam labeled by r (and its reverse). We note in
particular that the Raman transition taking the atom from
the j0i to the jF ¼ 2; mF ¼ 0i state is detuned by 2ωZ ≈
2π × 8.0 MHz from Raman resonance. Taking into account
the relevant transition strengths, the cavity couplings for the
two nearly resonant Raman processes are identical.
After performing the adiabatic elimination of the excited

states [2] and neglecting any off resonant transitions [31],
the system, in a suitable rotating frame defined in the
Supplemental Material [34], is described by the master
equation (ℏ ¼ 1)

_ρ ¼ −i½H; ρ� þ Lρ; ð4Þ
with

H ¼ ωa†aþ ω0Jz þ
δ

Nλ
a†aJz

þ λrffiffiffiffiffiffi
Nλ

p ðaJþ þ a†J−Þ þ
λsffiffiffiffiffiffi
Nλ

p ða†Jþ þ aJ−Þ; ð5Þ

and

Lρ ¼ κð2aρa† − a†aρ − ρa†aÞ: ð6Þ
Here a (a†) is the annihilation (creation) operator for the
cavity mode,

Jþ ¼
XNλ

j¼1

j1ijh0j; J− ¼
XNλ

j¼1

j0ijh1j; ð7Þ

and

Jz ¼
1

2

XNλ

j¼1

ðj1ijh1j − j0ijh0jÞ ð8Þ

are the collective atomic operators satisfying the commu-
tation relations ½Jþ; J−� ¼ 2Jz and ½J�; Jz� ¼ ∓J�,
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1
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ω0 ¼ ωdS − ðωhf þ ζ − ω1Þ; ð10Þ

δ ¼ α
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λr ¼ β

ffiffiffi
3
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Δs
; ð12Þ

where Nλ ≈ N=3 is the number of atoms in the coupled
states j1i and j0i, N λ̄ ¼ N − Nλ, and α ≈ 0.66 and
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β ≈ 0.78 are averaging factors taking into account the
spatial averaging of the cavity coupling due to thermal
motion. The averaging is described in more detail in the
Supplemental Material [34], together with a derivation of
Eq. (5) and an account of how we generate the necessary
Raman couplings.
To realize the Dicke model we set Ωr ¼ Ωs. For our

detuning from the excited state the difference between the
two Raman couplings is small, ðλs − λrÞ=ðλs þ λrÞ ≈ 0.028,
so we set λr ≈ λs ¼ λ and arrive at

H ¼ ωa†aþ ω0Jz þ
δ

Nλ
a†aJz þ

λffiffiffiffiffiffi
Nλ

p ðaþ a†ÞðJþ þ J−Þ:

ð13Þ

Similarly, we can describe the situation of a single Raman
coupling by settingΩs ¼ 0 andΩr > 0. Assuming the atoms
remain in the F ¼ 1 hyperfine ground state manifold, we
combineω and the constant term proportional to δ and arrive
at the Tavis-Cummings model [30],

H ¼ ðωd − ηÞa†aþ ω0Jz þ
λrffiffiffiffiffiffi
Nλ

p ðaJþ þ a†J−Þ; ð14Þ

where

ωd ¼ α
2

3
N
g2

Δr
ð15Þ

is the dispersive shift of the cavity resonance due toN atoms
in the lower hyperfine ground state manifold.
We start our experiments by forming a magneto-optical

trap 15 mm above the cavity. At the end of the magneto-
optical trapping phase we pump the atoms into the F ¼ 1
hyperfine manifold and load up to 5 × 106 atoms into a
single-beam optical dipole trap at 1064 nm. The beam
forming the dipole trap is moved down by 15 mm over one
second by a translation stage. Upon arrival in the cavity, we
adiabatically lower the power in the 1064 nm trap and
transfer the atoms into the intracavity optical lattice. By
varying the number of atoms in the magneto-optical trap,
we control the number of atoms delivered to the intracavity
trap, up to a maximum of 2 × 105. After loading, we
nondestructively determine the atom number by measuring
the dispersive shift ωd, with an accuracy of approximately
5 kHz. To do this, we sweep the frequency of a weak probe
beam across the dispersively shifted cavity. The Rabi
frequency of the probe beam, Ωp, has been adjusted to
yield an average intracavity photon number on resonance
of hni ≈ 40, to allow for sufficient signal to noise. After
measuring the dispersive shift, we either turn on the Tavis-
Cummings coupling and measure the transmission through
the cavity, or we ramp up the strength of the Dicke coupling
and observe the onset of superradiance by monitoring the
scattering into the cavity. Both experiments are described in
more detail below. At the end of the experimental sequence

we remeasure the dispersive shift to determine atom loss
during the experiment and we repeat the cycle. During the
experiment, we detect the output light of the cavity which is
coupled into a single mode fiber and directed onto a single
photon counting module (SPCM).
First we characterize our system bymeasuring the normal

mode splitting present in the Tavis-Cummings model. To do
so, we set η ¼ 0, ζ ≠ 0 and pulse Ωr on for 1 ms, with a
power of 18(1) mW in the coupling beam. Simultaneously,
we pulse the probe beam on for 1 ms and sweep its detuning
relative to the empty cavity, Δp ¼ ωp − ωc, from Δp ¼
−2π × 1.4 MHz to Δp ¼ −2π × 0.1 MHz. In the presence
of the coupling beam, the system shows an avoided crossing
in the transmission spectrum around ω ¼ ω0 and the size
of the splitting is given by 2λr. Experimentally, we vary
the atom number for a fixed ζ, which changes bothω and λr,
and leads to the transmission spectra shown in Fig. 2. From
the normal mode splitting we infer ω1 þ ωdS − ωhf ¼
−2π × 12.02ð32Þ MHz and λr ¼ 2π × 0.173ð15Þ MHz at
a dispersive shift of ωd ¼ −2π × 0.50ð1Þ MHz.
A central feature of the Dicke model is a phase transition

into a superradiant state once the coupling reaches a critical
value, which for ω0, ω > 0 is given by [21]

λc ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0

ω − δ=2
ðκ2 þ ðω − δ=2Þ2Þ

r
: ð16Þ

FIG. 2 (color online). Normal-mode splitting in the Tavis-
Cummings model. For a single coupling beam present, the cavity
transmission spectrum shows a normal mode splitting around
the dispersively shifted resonance. We vary the atom number
for a fixed λr and ζ, record the cavity transmission hni normalized
by the empty cavity transmission hnemptyi and average traces
corresponding to dispersive shifts in 10 kHz bins. Gray lines
indicate the bare energies ω0 ¼ −2π × 12.02 MHz − ζ and
ω ¼ ωd. Black lines indicate the eigenenergies of the coupled
system for a coupling of λr ¼ 2π × 0.17 MHz for a dispersive
shift of ωd ¼ −2π × 0.5 MHz. Transmission in excess of 1 is due
to shot noise exceeding the amplitude of the Lorentzian used to fit
the empty cavity transmission.
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We note that the critical coupling depends on the power in
the coupling beams because ω0 varies with the differential
stark shift ωdS. To observe the phase transition for a
particular η ≠ 0 and ζ ≠ 0, we start with both beams at
a low power such that the coupling is well below the critical
value and then linearly increase the total power, P, over
1 ms from 3.6(2) mW to 36(2) mW. We identify the critical
coupling by a rapid increase in the cavity output as shown
in Fig. 3. Experimentally, we again vary the atom number,
which changes both ω and λ, resulting in the observed
threshold powers shown in Fig. 4.
The observed thresholds are higher than expected from

simple theory, Eq. (16). There are four possible mecha-
nisms for this: thermal motion of the atoms, atom loss
during the experiment, spontaneous emission, and delays
in the onset of superradiance. Thermal motion has already
been taken into account by the averaging factor β and does
not have a strong dependence on temperature. Atom loss
is less then 10% and is thus unlikely to be a significant
contributing factor. Spontaneous emission, however, is
significant and we estimate a scattering rate of 0.55 ms−1

for a power of 18 mW in each Raman beam. We also note
that, for a fixed atom number Nλ and cavity coupling g, the
Raman coupling λ fixes the amount of population in the
excited state since Pe ∝ Ω2

r =Δ2
r ∝ λ2r =ðNλg2Þ, independent

of the chosen detuning from the excited state. Spontaneous
emission will tend to depump the atoms from the collective
spin state and thus decrease the effective coupling strength.
This effect is also present in the Tavis-Cummings model,
which we use to infer the effective coupling. Thus, if
the power in each of the Raman beams for the threshold
measurement was the same as for the splittingmeasurement,
we could expect the same coupling. However, the total
power at the beginning (end) of the Dicke experiment is
0.2 (2.0) times the power in Fig. 2.A corresponding decrease
(increase) in spontaneous emission leads to a larger (smaller)
coupling than what we would have expected based on
the ratio of powers. Repeating the measurement of Fig. 2
at 0.2 (2.0) times the power we measure a splitting that

deviates by 1.2 (0.89) from that expectation. The blue
shaded region in Fig. 4 takes the corresponding uncertainty
in estimating the coupling from the splitting measurement
into account. There is a remaining discrepancy in the
observed thresholds. We believe this is due to delays in
the onset of superradiance. When ramping the power in
finite time, there is a delay between crossing the threshold
and observing light from the cavity [9]. This leads to a
systematic overestimation of the threshold. To account for
this would require extending previous theoretical frame-
works [21] to include spontaneous emission and is an
interesting avenue for future research.
In summary, we have demonstrated the ability to use

cavity-assisted Raman transitions in order to create tunable
atom-photon interactions. We have both studied the Tavis-
Cummings and the Dicke model in this setup and shown
that the effective cavity and spin frequencies are easily
varied. Being able to both weakly probe the system and to
dynamically change the couplings put our setup in an ideal
situation to investigate the dynamics and steady state
properties of the Dicke model and its generalizations.
Furthermore the scheme presented in this work could be
easily extended to include additional couplings, more
atomic states or additional cavity modes [35], for example
by making use of the second birefringent mode present in

FIG. 3 (color online). Single threshold measurement. We ramp
the total power in both Raman coupling beams over 1 ms
(diagonal red line) and observe the output of the cavity (blue
curve). The critical coupling is inferred from when the output of
the cavity reaches 7.8 counts=ð5 μsÞ, indicated by the dashed
line, which corresponds to an intracavity photon number of 10
and is 10 times higher than the background counts.

FIG. 4 (color online). Superradiant phase transition in the Dicke
model. Above a critical coupling, the system undergoes a phase
transition into a superradiant state. Black dots show the observed
threshold values. The solid gray line shows the theoretical
predictions for a calculated differential stark shift of ωdS ¼
−2π × 0.157 MHz and ω1 ¼ −2π × 11.94 MHz and λ ¼ 2π ×
0.173 MHz at a dispersive shift of ωd ¼ −2π × 0.5 MHz, as
obtained from the normal-mode splitting measurement. The blue
shaded area shows the upper and lower bounds inferred from the
same measurement where the coupling for the lower bound is
increased by a factor of 1.2 and the one for the upper decreased by
a factor of 0.89 to account for the varying amount of spontaneous
emission. The dashed line is derived from the normal-mode
splitting measurement assuming ωdS ¼ 0 to illustrate the effect of
the varying differential stark shift.
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our setup. In this work we have explored the regime where
the effective atom-photon coupling exceeds the cavity
decay rate and residual spontaneous emission can not be
neglected. Future studies could explore a regime where
the critical coupling is much reduced in order to avoid
this problem, or add incoherent repumping to explore the
regime of steady-state superradiance [36].
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