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A “no-knowledge” measurement of an open quantum system yields no information about any system
observable; it only returns noise input from the environment. Surprisingly, performing such a no-
knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge
monitoring has reversible noise, which can be canceled by directly feeding back the measurement signal.
We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum
system coupled to a Markovian reservoir that is being monitored. Since no-knowledge feedback does not
depend on the system state or Hamiltonian, such decoherence cancellation is guaranteed to be general and
robust, and can operate in conjunction with any other quantum control protocol. As an application, we
show that no-knowledge feedback could be used to improve the performance of dissipative quantum
computers subjected to local loss.
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“More signal, less noise” is the guiding philosophy of
experimental science. Increasing measurement sensitivity
is a proven strategy for pushing the frontiers of science
and technology, yielding improved knowledge and control
over nature. However, at the quantum scale physics pushes
back by imposing a fundamental limit on the signal-to-noise
ratio by virtue of Heisenberg’s uncertainty principle [1,2].
Nevertheless, “more signal, less noise” also guides the design
of protocols for the measurement and control of quantum
systems, such as squeezed state photon [3] and atom [4]
interferometry, optimal parameter estimation [5], weak
measurement [6], measurement-based feedback control
[5,7], and adaptive measurement [8]. In this Letter, we take
the unorthodox “no signal, only noise” approach, and
consider measurements that are pure noise, and therefore
give no knowledge of the quantum state whatsoever. From
a quantum control perspective, one intuitively expects
such “no-knowledge” measurements to be unworthy of
study, since robust feedback control requires at least some
(and preferably good) knowledge of the system state. On the
contrary, we show that a measurement-based feedback
protocol based on no-knowledge monitoring can be used
to remove decoherence—the bane of quantum technology—
from an arbitrary quantum system coupled to a Markovian
environment that can be monitored.
Although the “no signal, only noise” approach is unor-

thodox, it has been considered within the context of channel
correction. In Refs. [9–11], it was proven that coherence
could be recovered in a noisy channel provided the

conditional evolution was random unitary. Consequently,
complete correction is, in principle, possible for systems
with dimension d ≤ 3. Furthermore, it was proven that
measurements that returned a small amount of knowledge
(“little signal, mostly noise”) provided a good error correc-
tion strategy, and a tradeoff relation between information
extraction and correction efficacy was established [12].
Our no-knowledge feedback scheme is consistent with
these results; however, it goes several steps further as
(1) it concretely shows how decoherence can be canceled
in a system of arbitrary dimension, with arbitrary coupling to
a Markovian environment, and (2) it provides the explicit
physical description of both the measurement and the
conditional evolution via our use of the continuous quantum
measurement framework.
Attempts to mitigate decoherence have resulted in

significant successes, including the development of error
correction codes [13–16], dynamical decoupling [17],
reservoir engineering [18,19], feedback control [20–24],
and the engineering of decoherence-free subspaces [25,26].
Nevertheless, decoherence has yet to be adequately tamed.
In our proposal, decoherence is canceled by directly feeding
the no-knowledge measurement signal back into the
system, in effect turning quantum noise against itself.
The scheme only requires knowledge of the decoherence
channel to be canceled; no knowledge of the system state is
required. It is consequently effective and robust, and can be
used in conjunction with other quantum control protocols.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt� þD½L�ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z�ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ�ρtyθðtÞ −

η

2
A2½Leiθ�ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z�ρt¼
ZρtþρtZ†, and A2½Z�ρt¼ZðA½Z�ρtÞþðA½Z�ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt�=Tr½ρt�. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ�πtyθðtÞ −

η

2
A2½Leiθ�πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p �=2, while dashed blue
lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p �=2. Although the estimate πt
converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ ffiffiffi

γ
p

σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate
of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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by Eq. (4) with π0 ≠ ρ0. In general, information about the
system is extracted from the measurement signal and used
to update the observer’s estimate. This leads to a better
estimate of the system state over time, and πt converges to
ρt in finite time [Fig. 1(b)]. This is not true for a no-
knowledge measurement, since the filter is conditioned
only on noise. Then Eqs. (2) and (4) decouple, and the filter
never converges to the system state [31] [Fig. 1(c)].
Canceling reservoir noise with no knowledge.—In

classical control theory, a system-observation pair is called
unobservable if the initial system state cannot be deter-
mined from the measurement signal. A system undergoing
a no-knowledge measurement is clearly unobservable, as
neither the past nor present system state can be determined
from the measurement record. One may expect, therefore,
that this lack of knowledge renders meaningful measure-
ment-based feedback control impossible. This intuition is
incorrect. Although a no-knowledge measurement produ-
ces a signal with no dependence on any system observable,
the quantum noise that constitutes the signal is precisely the
same noise that corrupts the system state. Consequently, by
applying an appropriate feedback the no-knowledge meas-
urement signal can be used to cancel the noise corrupting
the system’s evolution.
Specifically, suppose L is Hermitian, and we make a

measurement of the no-knowledge quadrature θ ¼ π=2with
perfect efficiency η ¼ 1. Then Eq. (2) takes the simple form:

∂tρt ¼ −i½H − Lyπ=2ðtÞ; ρt�: ð5Þ
Since the dynamics due to the reservoir noise are unitary,
their effect is reversible and can be entirely canceled by
directly feeding back the measurement signal. Explicitly, by
making the replacementH → H þ Lyπ=2ðtÞ, Eq. (5) reduces
to ∂tρt ¼ −i½H; ρt�.
What is particularly interesting about no-knowledge feed-

back is that it works when the system and filter are initially
very different [see Figs. 1(d) and 1(e)]. The reason is that the
measurement signal is simply fed back via the Hamiltonian
without any prior filtering. Indeed, no-knowledge feedback
can be successfully implemented with almost no a priori
knowledge of the underlying system state or dynamics.
No-knowledge feedback only requires a correct identifica-
tion of the no-knowledge quadrature, which depends only
on the coupling operator L, and the ability to monitor this
decoherence channel. A precise description of the system
state and its unitary evolution is not required. This natural
robustness [40] gives no-knowledge feedback an advantage
over other state-dependent methods of decoherence reduc-
tion [41], particularly for systemswhere the dynamics cannot
be precisely quantified.
When the detection efficiency is imperfect, the effective-

ness of no-knowledge feedback is reduced. The evolution is
no longer purely unitary,

∂tρt ¼ −i½H −
ffiffiffi
η

p
Lyπ=2ðtÞ; ρt� þ ð1 − ηÞD½L�ρt; ð6Þ

and therefore cannot be entirely canceled by feeding back
the measurement signal. Nevertheless, by choosing the no-
knowledge feedbackH→Hþ ffiffiffi

η
p

Lyπ=2ðtÞ, the decoherence
rate can be reduced by a factor of (1 − η) [cf. Eq. (1)]:

∂tρt ¼ −i½H; ρt� þ ð1 − ηÞD½L�ρt: ð7Þ
Experiments with imperfect detection efficiency can there-
fore still enjoy a significant and robust decoherence reduction
by employing no-knowledge feedback.
An analogous result exists for photodetection, where

unitary L corresponds to a no-knowledge measurement.
Noise is canceled by applying a unitary gate to the system
after the detection of a photon [31].
Removing decoherence for general L.—As formulated

above, a no-knowledge measurement is only possible when
the coupling operator is Hermitian [42]. Since physical
observables are Hermitian, direct no-knowledge measure-
ments are possible in many situations. Examples include
dephasing in qubits (L ¼ σz) [43], optomechanical devices
under position measurement (L ¼ x) [44], and mini-
mally destructive detection of Bose-Einstein condensates
[22–24,45]. However, some common coupling operators,
such as the annihilation operator a, are not Hermitian.
Fortuitously, we can still remove decoherence for a general
L via a similar measurement-based feedback scheme.
Counterintuitively, this requires an extra reservoir with
coupling operator L†, giving the unconditional dynamics

∂tϱt ¼ −i½H; ϱt� þD½L�ϱt þD½L†�ϱt: ð8Þ

The “trick” is to recognize that D½L�ρt þD½L†�ρt ¼
D½Lþ�ρt þD½L−�ρt, where L� ¼ ið1∓1Þ=2ðL� L†Þ= ffiffiffi

2
p

are Hermitian. Thus, L� are effective coupling operators
that admit no-knowledge measurements.
Measurements of L� are possible by taking the output

channels of both reservoirs, mixing them via a 50∶50 beam
splitter, introducing a relative phase shift of π=2, and
subsequently measuring each output with homodyne detec-
tion (see Fig. 2). This yields the two measurement signals
y�θ ðtÞ ¼ 2

ffiffiffi
η

p
cos θhL�it þ ξ�ðtÞ, where ξ�ðtÞ are indepen-

dent Stratonovich noises. No-knowledge measurements of
L� occur for quadrature angle θ ¼ π=2. The beam splitting
step of the feedback protocol is vital, and has no classical
analogue, making our result a quantum feedback protocol.
The evolution of ρt under these no-knowledge measure-

ments is given by a straightforward generalization of Eq. (6):

∂tρt ¼ −i½H −
ffiffiffi
η

p ðLþyþπ=2ðtÞ þ L−y−π=2ðtÞÞ; ρt�
þ ð1 − ηÞðD½L�ρt þD½L†�ρtÞ: ð9Þ

Finally, we directly feed the measurement signals back via
H → H þ ffiffiffi

η
p ðLþyþπ=2ðtÞ þ L−y−π=2ðtÞÞ:

∂tρt ¼ −i½H; ρt� þ ð1 − ηÞðD½L�ρt þD½L†�ρtÞ: ð10Þ
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The original decoherence in the system has been suppressed
by the factor (1 − η), admittedly at the cost of introducing
additional decoherence due to L†. However, in the perfect
detection efficiency limit, η → 1, all decoherence is eradi-
cated from the system.
The successful implementation of our scheme requires

some level of reservoir engineering and monitoring. In
principle, such dissipative engineering is possible for a range
of physical systems. For example, Carvalho and Santos [46]
showed how to engineer an additional σþ reservoir to the
spontaneous emission decoherence of two qubits. This sys-
tem is a specific instance ofEq. (9) forL ¼ σ−, and allows for
the protection of entanglement via the environmental mon-
itoring [46–49], or even quantum computation when applied
to multiple qubits [50]. Although none of the papers
considered the possibility of canceling decoherence via
no-knowledge feedback, implementing such feedbackwould
be straightforward via the inclusion of the feedback
HamiltonianH¼ðσ−þσþÞyþπ=2ðtÞ=

ffiffiffi
2

p þiðσ−−σþÞy−π=2ðtÞ=ffiffiffi
2

p
. This Hamiltonian simply corresponds to the application

of two classical fields resonant to the qubit transition and
modulated by the measurement signals.
From an experimental standpoint, the homodyne mon-

itoring and modulated feedback driving should be relatively
simple to implement in a variety of physical systems. In
particular, specific homodyne quadratures can be chosen
with a high degree of accuracy, as is routinely done in
tomography, and with high efficiencies. More challenging
is the reservoir engineering step and the efficient collection
of the decoherence channel, which ultimately limits the
overall efficiency η. Nevertheless, recent demonstrations
in systems as diverse as superconducting qubits [51–53],
cavity QED experiments [54], and ion traps [55,56] indicate
that an experimental realization of our scheme is entirely
plausible in the near future. For example, Ref. [52] reported
η ¼ 0.49 when monitoring a cavity field coupled to a
superconducting qubit, and efficiencies above 90% are
achievable via coupling an ancilla to the superconducting
qubits [57]. In microwave cavity experiments, cavity field
monitoring with η ¼ 0.5 has been demonstrated [58].
Application: Dissipative quantum computing.—It was

recently shown that appropriately engineered quasilocal

dissipation can be used to perform universal quantum
computation (UQC) [59,60]. Although such dissipative
quantum computing (DQC) is robust to decoherence in
principle, in practice it is likely to suffer from local errors
due to the presence of local loss. For traditional UQC, local
errors can be corrected via quantum error correction (QEC)
codes. Indeed, the threshold theorem proves that traditional
UQC can be scaled to large numbers of qubits, even when
local errors are present, provided QEC is in operation [43].
However, QEC requires precisely timed projective meas-
urement and conditional operations; hence, adding this
capacity to DQC greatly complicates the engineering of
these systems [61].
We provide a simpler solution. Provided the cause of

the local errors is diagnosable, no-knowledge feedback
can be used to remove their effect. Crucially, the feedback
will work concurrently with any quantum computation. To
show this, we consider the effect of local loss on a DQC
algorithm designed to generate a linear cluster state [see
Fig. 3(a)]. A series of N qubits evolve under the influence
of quasilocal dissipators Qi ¼

ffiffiffi
α

p ð1þ σi−1z σixσ
iþ1
z Þσiz=2

[with special cases Q1 ¼
ffiffiffi
α

p ð1þ σ1xσ
2
zÞσ1z=2 and QN ¼ffiffiffi

α
p ð1þ σN−1

z σNx ÞσNz =2 at the boundaries] and local loss
operators Li ¼ ffiffiffi

γ
p

σi−, such that the ME for the whole
system is ∂tϱt ¼

P
N
i ðD½Qi� þD½Li�Þϱt. The steady state

ρss for the system when there is no local loss (γ ¼ 0) is a
cluster state, ρss ¼ ρcluster. However, when local loss is
present (γ ≠ 0), the steady state of the system is no longer
the target cluster state. As shown in Fig. 3(c), the fidelity
F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tr½ρssρcluster�
p

between the target cluster state and
the actual steady state rapidly decreases with system size.
However, when no-knowledge feedback is implemented as
depicted in Fig. 3(b), the decline in the fidelity as a function
of system size is arrested. Engineering the additional local
dissipator σiþ [46,47] required for this feedback should
be trivial in comparison to engineering the quasilocal
dissipators Qi. Figure 3(c) quantifies the effectiveness of
the no-knowledge feedback, demonstrating that the
fidelity improves as the detection efficiency increases,
with the creation of a perfect cluster state possible when
η ¼ 1. In fact, since no-knowledge feedback can
operate concurrently with any DQC algorithm, it could
be included in addition to QEC. Hence, no-knowledge
feedback with an imperfect detection efficiency may reduce
the error rate to the threshold required for truly scal-
able DQC.
DQC is just one of many possible quantum technologies

that could be improved, ormade possible, by the general and
robust reduction of decoherence via no-knowledge feed-
back.However, since no-knowledge feedback can operate in
conjunction with other quantum control protocols, it does
not compete with other decoherence reduction methods
(e.g., QEC), but rather complements them. Furthermore,
given the simplicity of no-knowledge feedback, we suspect
that no-knowledge coherent feedback control is a strong

FIG. 2 (color online). Scheme for engineering measurements of
L� from the outputs of couplings L and L†.
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possibility. The many advantages of no-knowledge feed-
back strengthen the case for more reliable and robust
dissipation engineering, as this is a vital ingredient for the
cancellation of general forms of decoherence.
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FIG. 3 (color online). (a) A DQC setup with an N qubit chain
coupled to quasilocal operators Qi and local loss operators Li.
As demonstrated in (c), a loss rate of γ=α ¼ 10 decreases the
fidelity between the target cluster state and the system steady state
(green triangles), and decreases it more severely for a larger
number of qubits. (b, i) The errors introduced by the local loss
are corrected by applying our no-knowledge feedback protocol
on each qubit. (b, ii) For each qubit a no-knowledge measurement
is constructed by coupling an additional reservoir

ffiffiffi
γ

p
σiþ

and measuring σix and σiy at a homodyne angle of π=2 as
summarized in Fig. 2. Decoherence is canceled by feeding back

H ¼ ffiffiffiffiffi
ηγ

p P
i½σixyði;þÞ

π=2 ðtÞ þ σiyy
ði;−Þ
π=2 ðtÞ�. (c) The fidelity as a func-

tion of system size for no feedback (green triangles), and no-
knowledge feedback with detection efficiency η ¼ 0.9 (yellow
diamonds), η ¼ 0.99 (red squares), and η ¼ 1 (blue circles).
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