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We show that Casimir-Polder forces between two relativistic uniformly accelerated atoms exhibit a
transition from the short distance thermal-like behavior predicted by the Unruh effect to a long distance
nonthermal behavior, associated with the breakdown of a local inertial description of the system. This
phenomenology extends the Unruh thermal response detected by a single accelerated observer to an
accelerated spatially extended system of two particles, and we identify the characteristic length scale for
this crossover with the inverse of the proper acceleration of the two atoms. Our results are derived
separating at fourth order in perturbation theory the contributions of vacuum fluctuations and radiation
reaction field to the Casimir-Polder interaction between two atoms moving in two generic stationary
trajectories separated by a constant distance and linearly coupled to a scalar field. The field can be assumed
in its vacuum state or at finite temperature, resulting in a general method for the computation of Casimir-
Polder forces in stationary regimes.
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Introduction.—Recent significant experimental progress
in measuring fluctuation induced forces with an unprec-
edented level of accuracy [1,2], from the microscopic to the
macroscopic level, has strongly renewed the interest in
Casimir and Casimir-Polder forces (CP) interactions [3–6],
even at finite temperature [7,8] and in out of equilibrium
configurations [9]. The interest on Casimir physics spreads
ubiquitously, from quantum electrodynamics towards
cosmology, statistical mechanics, and colloidal physics,
as well as material science and nanophysics [2,10].
A peculiar aspect of the quantum vacuum is that its

particle content is observer dependent. The Unruh effect is
a striking manifestation of this fact: a uniformly accel-
erated observer in flat spacetime associates a thermal bath
to the power spectrum of quantum vacuum fluctuations
with a temperature proportional to its proper acceleration
[11–14]. Despite its conceptual importance for connec-
tions with Hawking radiation [15] and for its impact on
cosmology, black hole physics, particle physics, and
relativistic quantum information [16], experimental detec-
tion of the Unruh effect remains elusive, since an accel-
eration of the order of 1020 m=s2 would be required in
order to measure a temperature of 1 K. On the other hand,
it has recently been shown that the van der Waals
interaction between two accelerated atoms could allow
us to detect the Unruh effect with reasonable values of the
acceleration [17]. Even if it is a well established fact that
an accelerated observer perceives the vacuum field as a
thermal state [12], the tantalizing possibility to find
nonthermal features associated with relativistic uniform
acceleration would constitute a sharp representative

signature of accelerated motion beyond the Unruh thermal
analogy [18–21].
In this Letter, we aim at bridging the fields of Casimir

forces and of the Unruh effect, showing that both thermal
and nonthermal features associated to a relativistic uniformly
accelerated motion can be probed through the Casimir-
Polder force between two accelerating atoms. In order to
inspect the hallmarks of relativistic accelerations on CP
forces, we derive a general formula which allows for the
computation of Casimir-Polder forces in generic stationary
conditions from first principles, extending to fourth order in
perturbation theory, a method developed by Dalibard et al.
[22]. In particular, we consider the interaction energy, arising
from quantum vacuum fluctuations, among two atoms
moving with a uniform proper acceleration a in the same
direction and separated by a constant distance z,
perpendicular to their trajectories and linearly coupled to
a scalar field. We show that the Casimir-Polder force
between the two accelerating atoms displays a novel
transition in its distance dependence at a new length scale,
za, given by the inverse of the atomic acceleration (hereafter,
we use natural units ℏ ¼ c ¼ kB ¼ 1.). Such a transition is a
crossover in the interaction energy, from a Casimir-Polder
potential for az ≪ 1 , where the static zero-temperature
interaction (as z−2 and z−3 in the nonretarded and retarded
regimes, respectively) receives a small thermal-like correc-
tion due to acceleration at the Unruh temperature
TU ¼ a=2π, to a nonthermal interaction energy for
az ≫ 1, characterized by a z−4 power law decay. This result
should be compared with the Casimir-Polder force between
two static atoms interacting with the scalar field at
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temperature T, where, at the thermal wavelength λth ∼ 1=T,
the interaction shows a transition from the z−3 quantum
regime to the z−2 thermal classical regime. The new
characteristic length za ∼ 1=a is associated to the breakdown
of the approximate description of the system in terms of a
local inertial frame, and it indicates that the Casimir-Polder
interaction is strongly reshaped by the presence of the
noninertial spacetime background, associated to the relativ-
istic accelerated motion of the two atoms. This phenom-
enology is a simple nontrivial extension of the Unruh
thermal response detected by a single accelerated observer
to a system of two accelerated particles.
Casimir-Polder interactions.—We consider the

Hamiltonian of a pair of two-level atoms (A, B), charac-
terized by the same transition frequency ω0 and linearly
coupled to a massless scalar field ϕðxÞ by the coupling
constant λ. The Hamiltonian can be written in the Dicke
notation [23] and in natural units (ℏ ¼ c ¼ 1), as

H ¼ ω0σ
A
3 ðτÞ þ ω0σ

B
3 ðτÞ þ

Z
d3kωka

†
kak

dt
dτ

þ λσA2 ðτÞϕ½xAðτÞ� þ λσB2 ðτÞϕ½xBðτÞ�; ð1Þ

where σiði ¼ 1; 2; 3Þ are the Pauli matrices, ak, a
†
k are the

annihilation and creation operators of the massless scalar
field ϕðxÞ with the linear dispersion relation ωk ¼ jkj. The
Hamiltonian (1) is expressed in terms of the same proper
time τ of the two atoms (assuming a background flat
spacetime), and the interaction term is evaluated on a
generic stationary trajectory xðτÞ of the two atoms. The
distance z between the atoms, perpendicular to their
acceleration, is constant. Quantum fluctuations of the field,
as well as radiation source fields, can induce an effective
interaction among the two atoms at fourth order in the
atom-field interaction. Following the procedure proposed

in [22], we can split the rate of variation dOA=dτ of an
atomic observable OA in the sum of two contributions, vf
and rr,

�
dOA

dτ

�
vf=rr

¼ iλ
2
ðϕf=s½xAðτÞ�½σ2ðτÞ;OA�

þ ½σ2ðτÞ;OA�ϕf=s½xAðτÞ�Þ; ð2Þ

where the free term ϕf is the contribution present even in
the absence of interaction, while the source term ϕs is the
part due to the atom-field coupling and containing the
coupling constant λ. The first contribution, ðdOA=dτÞvf
describes the change inOA caused by the fluctuations of the
field that are present even in the vacuum (vacuum fluctua-
tions), while the second term represents the influence of the
atom on the field, which in turn can act back on the atom
(radiation reaction). The method consists in rewriting these
contributions at a given order in perturbation theory as
quantum evolutions given by two effective Hamiltonians,
Hvf=rr

eff , and then computing the vf and rr contributions to
the atomic energy level shift (a second-order calculation is
sufficient for the Lamb shift). In order to derive the
Casimir-Polder interaction for two atoms (A, B), in the
quantum states jαi and jβi, respectively, and moving with
two arbitrary stationary trajectories xAðτÞ and xBðτÞ (the
trajectories of the two atoms differ by a space translation
only), we derive the effective HamiltoniansHvf=rr

eff at fourth
order in λ for one of the two atoms, as we shall report in
detail elsewhere [24]. We disregard the energy shifts
independent from the atomic separation, because they do
not contribute to the interatomic force. We find the
following expression of the vacuum fluctuations contribu-
tion to the energy level shift of atom A in the state ∣αi

δEA
α;vf ¼ 4iλ4 lim

ðτ−τ0Þ→þ∞

Z
τ

τ0

dτ0
Z

τ0

τ0

dτ″
Z

τ″

τ0

dτ‴CF(ϕf½xAðτÞ�;ϕf½xBðτ‴Þ�)χF(ϕf½xAðτ0Þ�;ϕf½xBðτ″Þ�)χAαðτ; τ0ÞχBβ ðτ″; τ‴Þ; ð3Þ

where we have introduced, respectively, the field symmet-
ric correlation function and the field susceptibility,

CF(ϕf½xAðτÞ�;ϕf½xBðτ0Þ�)¼
1

2
h0jfϕf½xAðτÞ�;ϕf½xBðτ0Þ�gj0i;

χF(ϕf½xAðτÞ�;ϕf½xBðτ0Þ�)¼
1

2
h0j½ϕf½xAðτÞ�;ϕf½xBðτ0Þ��j0i:

ð4Þ

Analogously, we have defined the atomic susceptibility of
atom A (B) in state α (β),

χA=Bα=β ðτ; τ0Þ≡ 1

2
hα=βj½σf2;A=BðτÞ; σf2;A=Bðτ0Þ�jα=βi: ð5Þ

In Eqs. (3)–(5), the superscript f stands for the free
evolution of the operators. Although, in (4), we have assumed

the field in its ground state j0i, Eq. (3) is also valid for a
quantum field at finite temperature, using the appropriate
statistical functions; also, in the following, we shall assume
the two atoms prepared in their ground state jgi.
The result (3) has a sharp physical interpretation. The

vacuum fluctuations contribution to the interatomic energy
originates from a nonlocal field correlation (expressed
by CF), present even in the vacuum state, which induces
and correlates dipole moments in the two atoms (χA=B), that
eventually polarizes the field (χF). This physical picture is
also consistent with the paradigmatic interpretation of
Casimir-Polder forces by Power and Thirunamachandran
in [25], and is also often used to calculate many-body
Casimir-Polder forces [26–28]. The radiation reaction
contribution can be obtained similarly [24], but for brevity
we do not report its explicit expression here. It describes the
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complementary physical mechanism, in which the atom A
has a fluctuating dipole moment (CA) and it polarizes the
field (χF); a dipole moment is, thus, induced in the second
atom (χB), and it polarizes the field (χF), which eventually
acts back on atom A. It is possible to show that the radiation
reaction contribution is negligible compared to the vacuum
fluctuation contribution for all the cases considered in this
Letter, specifically, at small temperatures, i.e., for T ≪ ω0,
or, in the case of two uniformly accelerating atoms, for
a ≪ ω0 [24]. Thus, we concentrate on the vacuum fluc-
tuations contribution only.
As a nontrivial test for our results, we can first

calculate the scalar Casimir-Polder interaction energy
ECP between two stationary atoms. Similar to the electro-
magnetic Casimir-Polder case [4], we find a transition
from a near zone regime, defined by ω0z ≪ 1, where
ECP ≃ −ð1=1024π2Þðλ4=ω0Þð1=z2Þ, to a far zone regime,
ECP ≃ −ð1=512π3Þðλ4=ω2

0Þð1=z3Þ, defined for distances
ω0z ≫ 1, where retardation effects in the propagation of
the field are relevant. A generalization of Eq. (3) allows us
to also obtain the scalar Casimir-Polder force at finite
temperature T, in terms of the thermal correlation function
and susceptibility for a scalar field

CF
th(ϕ

f½xAðτÞ�;ϕf½xBðτ0Þ�)

¼ 1

8π2
1

z

Z
∞

0

dω sinðωzÞcoth
�
ω

2T

�
ðe−iωðτ−τ0Þ þ eiωðτ−τ0ÞÞ;

χFth(ϕ
f½xAðτÞ�;ϕf½xBðτ0Þ�)

¼ 1

8π2
1

z

Z
∞

0

dω sinðωzÞðe−iωðτ−τ0Þ − eiωðτ−τ0ÞÞ: ð6Þ

The explicit computation is performed in the limit of small
temperatures, T ≪ ω0, following a general method origi-
nally introduced by Lifshitz [29–31]. In view of the
comparison with the Casimir-Polder force between two
accelerated atoms, which is the main point of this Letter, it
is important to stress that at finite temperatures, the
massless thermal wavelength λth ∼ 1=T separates a quan-
tum regime from a classical thermal regime. Indeed, for
distances z ≪ λth we find the expression for the static scalar
Casimir-Polder force in near and far zone plus subleading
thermal corrections proportional to −ðλ4=zÞðT=ω0Þ2; on the
other hand, for distances larger than the typical length
scales associated to quantum effects, i.e., for z ≫ λth, the
Casimir-Polder force manifests, again, a classical thermal
behavior similar to that in the near zone

Eth
CP ¼ −

1

512π3
λ4

ω2
0

T
z2
; ð7Þ

as it has been already noticed for the electromagnetic
case [7,31].
Unruh corrections to Casimir-Polder interactions.—We

now apply our result (3) to the case of two atoms moving
with the same uniform acceleration, perpendicular to their
separation. In this case, a modification of their Casimir-
Polder interaction is expected, because the two atoms
perceive modified vacuum fluctuations, as the Unruh effect
would suggest. We have already obtained hints of such
modification [21] and discussed observability of this new
phenomenon that could be a way to confirm experimentally
the evidence of the Unruh effect [17]. An atommoving with
uniform relativistic acceleration a in the x̂ direction follows
the worldline

tðτÞ ¼ 1

a
sinhðaτÞ; xðτÞ ¼ 1

a
coshðaτÞ;

yðτÞ ¼ zðτÞ ¼ 0: ð8Þ

We are now going to show how interatomic Casimir-
Polder interactions allow us to distinguish the effect of a
relativistic acceleration from a thermal behavior. Even if
such a thermal character has been envisaged in a large
number of situations [12,32–34], departures from thermal
predictions for accelerating atoms have been shown in the
Lamb shift and in the spontaneous excitation of accelerat-
ing atoms, coupled to the electromagnetic field, in vacuum
space [18,35] or in front of a conducting plate [19,36–38].
In such a situation, it is convenient to introduce a new set

of coordinates, necessary to cover the Minkowski space-
time (t, x) accessible to accelerated observers. They are
defined in two regions, the Rindler wedges, which are
causally disconnected, and where a Rindler metric can be
defined accordingly [12,39].
We consider two uniformly accelerating atoms, moving

along the worldlines (8) with the same uniform acceleration
a ≪ ω0, and separated by a distance z orthogonal to the
acceleration direction x̂. We show that, at short distances,
Casimir-Polder interactions can probe thermal Unruh-like
effects, while at larger distances they reveal a nonthermal
behavior due to the intrinsically noninertial nature of the
Rindler metric. As done in (6) for the thermal Casimir-Polder
force, we first obtain the correlation function and suscep-
tibility of the scalar field in the accelerated background

CF
acc:(ϕ

f½xAðτÞ�;ϕf½xBðτ0Þ�) ¼
1

8π2
1

N ðz; aÞ
Z

∞

0

dωfðω; z; aÞ coth
�
πω

a

�
ðe−iωðτ−τ0Þ þ eiωðτ−τ0ÞÞ;

χFacc:(ϕ
f½xAðτÞ�;ϕf½xBðτ0Þ�) ¼

1

8π2
1

N ðz; aÞ
Z

∞

0

dωfðω; z; aÞðe−iωðτ−τ0Þ − eiωðτ−τ0ÞÞ; ð9Þ

PRL 113, 020403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
11 JULY 2014

020403-3



where fðω;z;aÞ¼ sin½ð2ω=aÞsinh−1ðaz=2Þ� andN ðz;aÞ ¼
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðaz=2Þ2

p
. A close comparison between (9) and (6)

shows that for az ≪ 1 the correlation function (9) has a
thermal-like behavior set by the Unruh temperature, TU.
Hence, the vacuum fluctuations contribution (3) to the
Casimir-Polder interaction exhibits, at the lowest order in
az, the same thermal-like correction ∼ − ðλ4=zÞðTU=ω0Þ2,
found for the Casimir-Polder interaction at finite temper-
ature. At higher orders in az, Eq. (9) shows that the
correction due to the accelerated atomic motion starts to
differ significantly from the correction due to a finite
temperature [40]. This discrepancy suggests a strong
breakdown of the usual analogy between acceleration
and finite temperature effects for the Casimir-Polder
potential at distances z ≫ za ∼ 1=a, resulting in a novel
power law behavior of the Casimir-Polder interaction,

Eacc
CP ¼ −

1

512π4
λ4

ω2
0

za
z4

: ð10Þ

Our result (10) shows that the Casimir-Polder interaction
energy between two accelerated atoms decreases faster with
the distance than in both near and far zones. This can be
guessed from the following heuristic argument: since both
atoms are accelerating, the distance traveled by a scalar
photon emitted by one atom to reach the other atom
increases with time, and this results in an overall decrease
of the interaction strength among them [17] [a more precise
comparison between our result in (10) and the results in [17]
is not straightforward because in the latter case the inter-
action energy is time dependent and valid in a well-defined
time interval, while the present result involves a time average
of the interaction energy, as is evident from (3)]. We can

consider the behavior described by Eq. (10) as a new
quantum regime, as opposed to the classical thermal regime
given by Eq. (7), which, on the contrary, destroys the
quantum retarded Casimir interaction decaying as z−3.
Also, we wish to stress that the distance za is the character-
istic length scale for the breakdown of the local inertial frame
approximation [41]: for distances smaller than za, it is
possible to find a local inertial frame where the correlation
functions of the scalar field are fairly well described by their
thermal Minkowski analogue, and the only net effect of
acceleration is embodied in the Unruh thermal analogy; on
the other hand, signals spreading over distances larger than
za must take into account the noninertial character of
relativistic acceleration, encoded in the non-Minkowskian
metric. Consequently, field quantization in Rindler space-
time will strongly affect the nature of vacuum fluctuations
(CF) and field susceptibility (χF), ultimately leading to the
novel power law behavior of the Casimir-Polder potential
(10). This phenomenology is in sharp contrast with the
classical effect outlined above for the Casimir-Polder inter-
action at finite temperature [see Eq. (7)], and it is summa-
rized in Fig. 1. It should be noted that such an effect cannot
be detected by a single uniformly accelerated pointlike
detector in the unbounded space, as in [12,33], since, in
that case, it is always possible to find a local set of
Minkowski coordinates in the neighborhood of a pointlike
detector. With this respect, our result can be seen as a simple
nontrivial extension of the Unruh thermal response, detected
by a single accelerating observer, to a system of two
relativistic accelerated systems. Finally, we would like to
point out that the qualitative change of Casimir-Polder force
described by Eq. (10) is ultimately grounded on the non-
inertial character of the accelerated background and it is
expected to manifest ubiquitously also for other fields, as
well as for a multilevel atom configuration.
Conclusions and perspectives.—In this Letter, we have

shown how Casimir-Polder forces among two uniformly
accelerating atoms can probe nonthermal effects beyond
the Unruh analogy between uniform acceleration and finite
temperature. We have shown that, for interatomic distances
above the characteristic length scale associated to a local
inertial description of the system, the Casimir-Polder
energy shows a different power law dependence with the
distance, compared to the corresponding potential at finite
temperature.
A qualitative change of the interatomic potential may

affect some macroscopic properties of an accelerated many-
atoms system, as the following example would suggest
(analogous ideal experiments were envisaged in [42] for an
accelerating box filled with photons). Let us consider a box
filled with atoms with a given proper density and moving
with finite acceleration a. The qualitative change of the
interaction between the atoms from a marginal long-range
z−3 to a short-range z−4 given by (10) at the acceleration-
dependent scale za, could manifest in a change of the

FIG. 1 (color online). Comparison between the Casimir-Polder
interaction among two atoms moving with relativistic uniform
acceleration a and constant separation z (red continuous line),
and the static interaction for atoms at rest at temperature T ¼
a=2π and same distance (blue dashed line), in the far zone,
z ≫ 1=ω0. While for short distances, z ≪ 1=a, both potentials
display the same thermal-like behavior, at distances larger than
the characteristic length scale 1=a, the thermal and the accel-
erated Casimir-Polder potentials exhibit a sharply different power
law decay with the interatomic distance.
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thermodynamics properties (for example in the equation of
state of the gas), if the average interatomic distance is larger
than ∼1=a, since thermodynamics of long-range and short-
range interacting systems is sharply different [43]. This
density or acceleration crossover is of quantum origin, and
it could also have consequences on thermodynamics of the
Universe during the stages of its evolution.
Also, our new expressions for the fourth-order vacuum

fluctuations and radiation reaction contributions to energy
shifts have a general validity, and they could be straight-
forwardly applied to investigate electromagnetic dispersion
interactions involving accelerating atoms [17–19,35,44] or
atoms in circular motion, which could be relevant for
detecting the Unruh effect [45]. Furthermore, they can
easily be employed to compute dispersion forces among
two atoms outside a Schwarzschild black hole or in de
Sitter spacetime, where Casimir forces could provide new
physical insights into problems of cosmological interest
(similar to recent computations of Lamb shifts in curved
backgrounds [46]).
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