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The quantum steering ellipsoid of a two-qubit state is the set of Bloch vectors that Bob can collapse
Alice’s qubit to, considering all possible measurements on his qubit. We provide an elementary
construction of the ellipsoid for arbitrary states, calculate its volume, and explain how this geometric
representation can be made faithful. The representation provides a range of new results, and uncovers new
features, such as the existence of “incomplete steering” in separable states. We show that entanglement can
be analyzed in terms of three geometric features of the ellipsoid and prove that a state is separable if and
only if it obeys a “nested tetrahedron” condition.
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The Bloch sphere provides a simple representation for
the state space of the most primitive quantum unit—the
qubit—resulting in geometric intuitions that are invaluable
in countless fundamental information-processing scenarios.
The two-qubit system, likewise, constitutes the primitive
unit for bipartite quantum correlations. However, the
two-qubit state space is described by 15 real parameters
with a surprising amount of structure and complexity. As
such, it is challenging both to faithfully represent its states
and to acquire natural intuitions for their properties [1–3].
The phenomenon of steering was first uncovered by

Schrödinger [4] (and subsequently rediscovered by others
[5–7]), who realized that local measurements on Bob’s side
of the pure state jψiAB could be used to “steer” Alice’s state
into any convex decompositions of her reduced state ρA.
Hence, we say that for jψiAB, steering is “complete” within
Alice’s Bloch sphere. For a two-qubit mixed state ρ, it is
known [8] that the convex set of states that Alice can be
steered to is an ellipsoid EA, see Fig. 1.
The purpose of this Letter is to show that this steering

ellipsoid is the natural generalization of the Bloch sphere
picture, in that it can be used to give a faithful representa-
tion of an arbitrary two-qubit state in three dimensions, and
moreover, that the core properties of the state and its
correlations are made manifest in simple geometric terms.
By adopting this representation, we are led to a range of

novel results for both separable and entangled states.
First, it reveals a new feature of separable quantum states,

called incomplete steering, where not all decompositions of
ρA within the steering ellipsoid EA are accessible. More

importantly, the representation reveals surprising structure
in mixed state entanglement. We find that mixed state
entanglement decomposes into the simple geometric com-
ponents of (a) the spatial orientation of the ellipsoid, (b) its
distance from the origin, and (c) its size. We are also lead to
the surprising nested tetrahedron condition: a state is
separable if and only if its ellipsoid fits inside a tetrahedron
that itself fits inside the Bloch sphere.
The representation also provides unity and insight for a

range of distinct features. The nested tetrahedron condition
leads to a simple determination of the minimal number of
product states in the ensemble of any separable state. We
note that the ellipsoid volume is an entanglement criterion,
and provide a formula for it in terms of detðρÞ and detðρTBÞ.
Nonzero ellipsoid volume is a type of correlation inter-
mediate between discord and entanglement.
Beyond these new insights, we also feel that this method

of compactly depicting any two-qubit state in three

FIG. 1 (color online). Ellipsoid representation of a two-qubit
state. For any two-qubit state ρ, the set of states to which Bob can
steer Alice forms an ellipsoid EA in Alice’s Bloch sphere,
containing her Bloch vector a. Bob’s Bloch vector b is also shown.
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dimensions should be of interest to a range of researchers in
both the theoretical and experimental quantum sciences.
The Pauli basis.—Let σμ ¼ f1; σx; σy; σzg, μ ¼ 0; 1; 2; 3

denote the “homogeneous Pauli basis.” Any single-qubit
Hermitian operator Ê can be written Ê ¼ 1

2

P
3
μ¼0 Xμσμ,

where the Xμ ¼ trðÊσμÞ are components of the real vector
X. Demanding that Ê ≥ 0 is equivalent to X0 ≥ 0 and
X2
0 ≥

P
3
i¼1 X

2
i , and we can identify Ê as a positive-operator

valued measure (POVM) element.
In a similar way, any two-qubit state ρ can be written

in the Pauli basis as ρ ¼ 1
4

P
3
μ;ν¼0Θμνσμ ⊗ σν, where

Θμν ¼ trðρσμ ⊗ σνÞ is real for all μ; ν. As a block matrix

we have Θ ¼ ð 1 bT

a T
Þ, where a; b are the Bloch vectors of

the reduced states ρA and ρB of ρ, respectively, and T is a
3 × 3 matrix encoding the correlations [2]. If Bob does a
POVM and obtains outcome Ê, he steers Alice to the state
proportional to trB½ρð1 ⊗ ÊÞ�, which, in the Pauli basis, is
given by the four-vector 1

2
ΘX, with probability 1

2
ð1þ b · xÞ

where x ¼ ðX1; X2; X3ÞT .
The four-vector formalism is related to the idea of

stochastic local operations and classical communication
(SLOCC) [1], which are operations of the form
ρ → ρ0 ¼ SA ⊗ SBρðSA ⊗ SBÞ†, where SA; SB are invert-
ible complex matrices. The set of states attainable from ρ
under SLOCC is called the SLOCC orbit of ρ, and denoted
SðρÞ. Under this action, the matrix Θ transforms as Θ0 ¼
ΛAΘΛT

B where ΛAðBÞ are proper orthochronous Lorentz
transformations [9]. Significant in what follows, for a
SLOCC operation affecting only Bob (Θ0 ¼ ΘΛB), the
set of states Alice is steered to is unaffected, since: X is
in the forward light cone if and only if X0 ¼ ΛBX is,
and Θ0X ¼ ΘX0.
Previously, in [8], a range of SLOCC techniques were

employed to study entanglement and steering for two-qubit
mixed states; however, this approach encounters problems
when applied to certain separable states and, moreover, is
not suited to addressing the geometric features of interest.
The techniques developed here follow a different line, and
circumvent both of these issues.
Construction of the quantum steering ellipsoid.—We

now provide an alternative construction of the steering
ellipsoid EA to that in [15], which applies even when EA is
degenerate.
Our construction of EA is easiest to understand in the

case when the state ρ has b ¼ 0. For such a state, suppose

Bob projects his qubit onto the pure state X ¼ ð 1
x
Þ with

x ¼ 1. Given this outcome, Alice is steered to

Y ¼ ΘX ¼
�
1 0T

a T

��
1

x

�

¼
�

1

aþ Tx

�

; ð1Þ

which occurs with probability 1
2
, and where Alice’s Bloch

vector is now aþ Tx. The set of all states Alice can end up
with is simply the unit sphere of possible x, shrunk and
rotated by T and translated by a, i.e., an ellipsoid centered
at a with orientation and semiaxes given by the eigenvec-
tors and eigenvalues of TTT . The ellipsoid dimension is
rankðTÞ ¼ rankðΘÞ − 1. Points inside the ellipsoid can be
reached via convex combinations of projective measure-
ments, and conversely, a POVM element is a positive
operator and so can be spectrally decomposed into a
mixture of projectors, thus, giving a point within the
ellipsoid.
Now, consider a general state with b ≠ 0. If b ¼ 1, then ρ

is a product state, in which case there is no steering and the
steering ellipsoid is the single point a. For the case b < 1,
we find that the SLOCC operator 1 ⊗ ð2ρBÞ−ð1=2Þ corre-
sponds to a Lorentz boost Lb by a “velocity” b that
transforms ρB to the maximally mixed state (which has
b ¼ 0). We refer to this special filtered state ~ρ as the
“canonical state” on the SLOCC orbit SðρÞ. Since SLOCC
operations on Bob do not affect Alice’s steering ellipsoid,
the parameters of an arbitrary state’s steering ellipsoid
are obtained by simply boosting Θ by Lb and reading off
the ellipsoid parameters. This gives a steering ellipsoid
centered at cA ¼ ða − TbÞ=ð1 − b2Þ, with orientation and
semiaxes lengths si ¼ ffiffiffiffi

qi
p

given [9] by the eigenvectors
and eigenvalues qi of the ellipsoid matrix

QA ¼ 1

1 − b2
ðT − abTÞ

�

1þ bbT

1 − b2

�

ðTT − baTÞ: ð2Þ

To obtain EB, the ellipsoid at B, we simply perform a
swap of A and B, which corresponds to transposing Θ and
sends b → a, a → b, T → TT . Hence, EA and EB always
have the same dimensionality, rankðΘÞ − 1. This completes
the construction of the geometric data (EA, a, b) for a given
state ρ. Next, we describe the reverse direction: obtaining ρ
from an ellipsoid EA and the vectors a and b.
Reconstruction of ρ from geometric data.—Given

a; b; EA ¼ ðQA; cAÞ, to recover ρ, we need T. In [9], we
prove that this matrix is given by

T ¼ 1

γ

�

γcAbT þ
ffiffiffiffiffiffiffi
QA

p
Oþ γ − 1

b2
ffiffiffiffiffiffiffi
QA

p
ObbT

�

; ð3Þ

where O ∈ Oð3Þ satisfies a ¼ cA þ ffiffiffiffiffiffiffi
QA

p
Ob. This specifies

O up to a rotation O0 ∈ Oð3Þ such that O0b ¼ b. The action
of O0 can be encoded, for example, by a coloring of EA as in
[16]. In this way, the steering ellipsoid can be used as a
faithful representation of ρ.O0 corresponds to a local unitary
and/or partial transpose on Bob’s system, and so is irrelevant
for any correlation properties such as entanglement.
“Complete” and “incomplete” steering.—The steering

ellipsoid specifies which states Bob can steer Alice to.
A more subtle question is which decompositions of
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Alice’s reduced state he can steer to. Clearly, a necessary
condition is that all of the states in the decomposition must
be in EA, surprisingly however, it turns out that this is not
sufficient.
Consider some nonproduct two-qubit state with

ellipsoids EA and EB. The following are equivalent [9]:
(1) (Complete steering of A) For any convex decomposition
of a into vectors in EA or on its surface, there exists a
POVM for Bob that steers Alice to it. (2) The affine span
of EB contains the origin.
These conditions hold for all nondegenerate ellipsoids

(which includes all entangled states) as well as all states
where b ¼ 0. However, complete steering is not symmetric:
the state ρ ¼ 1

2
ðj00ih00j þ j þ 1ihþ1jÞ has complete steer-

ing of Alice by Bob, but not vice versa.
The three geometric contributions to entanglement.—

The Peres-Horodecki criterion [17,18] asserts that a two-
qubit state ρe is entangled if and only if ρTB

e has a negative
eigenvalue. Furthermore, it can be shown [15] that, at most,
one eigenvalue of ρTB

e can be negative, and that ρTB
e is full

rank for all entangled states [19]. Hence, det ρTB
e < 0 is a

necessary and sufficient condition for entanglement.
Suppose ρ is entangled, then any state in its SLOCC orbit

SðρÞ is also entangled [15], including the canonical state
~ρ ∈ SðρÞ. It follows that ρ is entangled if and only if
detð~ρTBÞ < 0. However, the states ρ and ~ρ share the same EA,
and so, expanding detð~ρTBÞ < 0 in the geometric represen-
tation, we find that ρ is entangled if and only if a physical
steering ellipsoid with center c ¼ cn̂ and matrix Q satisfies

c4 − 2c2ð1 − trQþ 2n̂TQn̂Þ þ hðQÞ < 0; ð4Þ

where hðQÞ≔1–8
ffiffiffiffiffiffiffiffiffiffiffi
detQ

p þ 2trðQ2Þ − ½trðQÞ�2 − 2trðQÞ,
and we drop A; B labels as entanglement is a “symmetric”
relation. This equation is manifestly invariant under global
rotations, corresponding to local unitaries on the quantum
state, and shows that correlations between the qubits
manifest themselves in three geometric ways: (1) the dis-
tance c of the ellipsoid center from the origin, (2) the size of
the ellipsoid, and (3) its “skew,” captured by the term n̂TQn̂,
which reflects the alignment of the ellipsoid relative to the
radial direction described by center unit vector n̂.
The nested tetrahedron condition.—The condition for

entanglement given by equation (4) provides a compact
algebraic condition for nonseparability and uncovers con-
tributions from different geometric aspects. However, the
steering ellipsoid captures the distinction between sepa-
rable and nonseparable states in another elegant way: A
two-qubit state ρ is separable if and only if its steering
ellipsoid EA fits inside a tetrahedron that fits inside the
Bloch sphere. To prove necessity, suppose Alice and Bob
share a separable state ρ ¼ P

n
i¼1 piαi ⊗ βi. Since we can

always take n ≤ 4 [20], the Bloch vectors of the αi
define a (possibly degenerate) tetrahedron T within
Alice’s Bloch sphere. Bob’s outcome Ê collapses Alice

to
P

n
i¼1ðtrðÊβiÞ=trðÊρBÞÞpiαi. Hence, her steered Bloch

vector will be a convex combination of the Bloch vectors
for the αi—in other words her steering ellipsoid is con-
tained in T .
We prove, in [9], that the nontrivial converse holds: any

ellipsoid that fits inside a tetrahedron that itself fits inside
the Bloch sphere must arise from a separable state, and
thus, the nested tetrahedron condition is both necessary
and sufficient for separability of the state.
This key geometric insight leads to some nontrivial

corollaries. For example, for any separable state ρ, the
minimal number of product states in an ensemble
decomposition ρ ¼ P

n
i¼1 piαi ⊗ βi is n ¼ rankðΘÞ. If

rankðΘÞ ¼ 1, we have a product state, and so n ¼ 1, while
if rankðΘÞ ¼ 2, we have that EA is a line segment and we
form a decomposition of ρ using the endpoints of this
segment, giving n ¼ 2. The case rankðΘÞ ¼ 3 is slightly
more involved, but follows from the fact any ellipse inside a
tetrahedron inside the unit sphere also lies inside a triangle
in the unit sphere [9,21]. Finally, it is known [20] that any
separable state can be written using four product states,
which covers the case rankðΘÞ ¼ 4. Combining this with
the above results on complete steering provides a natural
geometrical classification of two qubit states, as in Fig. 2.
Quantum discord and ellipsoid orientation.—Quantum

discord has received much attention as a measure of the
quantumness of correlations (see [22] for details) in which
zero discord for one party roughly corresponds to them
possessing a nondisturbing projective measurement. Within
the geometric representation, it is readily seen that ρ has
zero discord for A if and only if EA degenerates to a radial
line segment, while ρ has zero discord for B if and only if
EA is one dimensional and b ¼ 2jcA − aj=lA, where lA is the
length of EA [9].
To illustrate the effect of the alignment of EA on the

entanglement and discord of a state, we can consider a
one-parameter family of states of the form ρðθÞ ¼ 1

4
ð1þ

1
2
σz ⊗ 1þP

ijTijðθÞσi ⊗ σjÞ, for which the ellipsoid
skew varies smoothly with θ while maintaining a constant
volume for EA. Specifically, we have that TðθÞ ¼
RyðθÞKRT

y ðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
QAðθÞ

p
, and so RyðθÞ ∈ SOð3Þ gener-

ates states with inequivalent correlations via rotation of
the steering ellipsoid around its own center cA ¼ ð0; 0; 1

2
ÞT,

note that this “internal rotation” is distinct from a global
rotation generated by a local unitary on the state. We
choose K ¼ diagð−ð9=20Þ;−ð3=10Þ;−ð3=10ÞÞ so that
ρðθÞ ≥ 0, for all θ ∈ ½0; πÞ. This family of states illustrates
opposing behavior of the discord and concurrence as a
function of θ, see Fig. 3. The entanglement favors an
orientation in which the longest semiaxis is aligned (radial)
with cA at the point θ ¼ π=2, while discord is maximized
when the short semiaxis is radial, at θ ¼ 0; π [23].
Volume of the ellipsoid.—The expression for the volume

of EA provides a compact and nontrivial relation between
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the steering properties of ρ and the ranks of ρ and ρTB .
The volume of any ellipsoid is proportional to the product
of its semiaxes V ¼ ð4π=3Þs1s2s3. Therefore, EA

has volume VA ¼ ð4π=3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
detQA

p
. Using the ellipsoid

matrix in equation (2), which may be rewritten as
VA ¼ ð4π=3Þðj detΘj=ð1 − b2Þ2Þ. However, it turns out
[9] that detΘ ¼ 16ðdet ρTB − det ρÞ; therefore,

VA ¼ 64π

3

j det ρ − det ρTB j
ð1 − b2Þ2 : ð5Þ

The EB volume follows from VA via the simple rela-
tion VB ¼ VAð1 − b2Þ2=ð1 − a2Þ2.
The ellipsoid volume is a nonlinear entanglement

criterion. Specifically, the Werner state on the separable-
entangled boundary has EA being the maximal sphere
volume V⋆ ¼ 4π=81 inscribed inside the largest possible
tetrahedron that can be inscribed inside the unit sphere [25].
We immediately deduce that any state with EA that has
volume V > V⋆ must be entangled. Note that entangled
states can have V ≤ V⋆.
Since V > V⋆ can only be attained by entangled states,

whilst zero discord states have one-dimensional (degener-
ate) ellipsoids, we see that nonzero volume, or “obesity,”
is strictly stronger than discord but strictly weaker than
entanglement.
Conclusion.—The quantum steering ellipsoid provides a

faithful representation of any two-qubit state and a natural
geometric classification of states. It yields clear and
intuitive understanding into the usual key aspects of
two-qubit states, uncovers surprising new features (such
as the nested tetrahedron condition, skew and obesity, and
incomplete steering) while prompting novel questions,
such as: can we use (4) to define a class of “least-classical”
separable states for fixed (a, b, c)? Can we use the nested
tetrahedron condition to provide a simple construction for
the best separable approximation [28] for a state ρ? What is
the geometric characterization of the possible steering
ellipsoids for an arbitrary two-qubit state? This would

FIG. 3 (color online). Discord (solid curve) and concurrence
(dotted curve) of the state ρðθÞ as a function of the orientation θ of
the ellipsoid. Entanglement is maximized when the major axis is
radial.

FIG. 2 (color online). The classes of steering ellipsoids. Here,
“Separable” (Sep.) and “Entangled” (Ent.) label the type of corre-
lation,while“Incomplete” (Incomp.) and“Complete” (Comp.) label
the type of steering. The large (green) dot is the reduced state in the
respective Bloch sphere. States with EA, being three dimensional,
have nonzero volume (or simply “obesity”), and these are either
entangled or separable. The state ρ is separable if and only if EA fits
insidea tetrahedroninsidetheBlochsphereofA.Forseparablestates,
the set EA can also be two dimensional (a steering pancake), or one
dimensional (a steering needle), or trivially zero dimensional (not
shown).For these cases, steering is either“complete,” if all ensemble
decompositions of a in EA are attainable (when the span of EB
contains 1

2
1), otherwise, the steering is “incomplete.” Zero discord

occurs only for radial steering needles.
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potentially be useful when using ellipsoids to visualize the
results of two-qubit state tomography. In [9], we have
provided a discussion of several extensions to the work
described in this Letter, beyond the two-qubit scenario to
higher dimensional systems.
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