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We study the integrable model of one-dimensional bosons with contact repulsion. In the limit of weak
interaction, we use the microscopic hydrodynamic theory to obtain the excitation spectrum. The statistics of
quasiparticles changes with the increase of momentum. At lowest momenta good quasiparticles are
fermions, while at higher momenta they are Bogoliubov bosons, in accordance with recent studies. In the
limit of strong interaction, we analyze the exact solution and find exact results for the spectrum in terms of
the asymptotic series. Those results undoubtedly suggest that fermionic quasiparticle excitations actually
exist at all momenta for moderate and strong interaction and also at lowest momenta for arbitrary
interaction. Moreover, at strong interaction we find highly accurate analytical results for several relevant
quantities of the Lieb-Liniger model.
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Recent experimental achievements with ultracold atoms
[1] urge us to deeply understand the properties of interact-
ing bosonic systems. One of the most fundamental prob-
lems is the excitation spectrum. For weakly interacting
bosons in three dimensions, it is given by the Bogoliubov
theory [2]. The spectrum is generically linear at lowest
momenta, but becomes quadratic above a certain interac-
tion dependent crossover scale, consistent with observa-
tions in cold atomic gases [3].
The behavior of interacting bosons in lower dimensions

is particular due to the pronounced role of quantum
fluctuations [4,5], preventing us from directly applying
the Bogoliubov theory. Hopefully, the existence of inte-
grable models in one dimension enables us to understand
more. An example is the Lieb-Liniger model, which
describes bosons with contact repulsion [6]. It is remark-
able not only due to the existence of an exact solution but
also to the possibility of realization with cold atomic gases
[7,8]. Furthermore, the model has two branches of elemen-
tary excitations. One is the conventional type I excitation
branch that exhibits the same features as predicted by
Bogoliubov theory in the limiting cases of small and large
momenta [9,10]. Second, the type II branch describes
solitonlike excitations [10,11].
The universal low-energy theory of interacting quantum

particles in one dimension is usually described by the
paradigm of the Luttinger liquid. The excitations in this
theory are phonons. These bosonic quasiparticles represent
the waves of particle density propagating with constant
velocity [12]. Despite its tremendous success [12], the
Luttinger liquid description is only the limiting theory,
since its foundation is the linear spectrum. This is clearly an
approximation for more realistic models. Recent efforts to
understand effects beyond the linear theory have yielded
the picture of fermionic quasiparticles that are true low-
energy excitations [13,14] in one-dimensional quantum

liquids. This is an interesting result, different from the
conventional picture of phonon excitations in a Luttinger
liquid.
In this Letter we consider the Lieb-Liniger model. Using

the microscopic theory and the exact solution, we find the
excitation spectrum at arbitrary momenta and in a wide
region of interaction strengths. Our microscopic results
fully support the phenomenological picture of fermionic
quasiparticles that are lowest-energy excitations at arbitrary
interaction strength [14]. Bosonic quasiparticles that are
characterized by the Bogoliubov form of the spectrum exist
only at weak interaction and at higher momenta.
We study the system of interacting bosons described by

the Lieb-Liniger model [6],

H ¼ −
ℏ2

2m

XN
i¼1

∂2

∂x2i þ
ℏ2c
2m

X
i≠j

δðxi − xjÞ: ð1Þ

Here m is the mass of particles, while c > 0 describes the
repulsion strength. We consider the thermodynamic limit
N, L → ∞, such that the mean density n ¼ N=L is finite.
For convenience, we introduce the dimensionless param-
eter γ ¼ c=n that characterizes the interaction strength. In
the following we primarily consider the type I branch of
elementary excitations.
In the regime of weak interaction, γ ≪ 1, we use the

hydrodynamic approach [15,16] to study the model (1).
We start from the standard expression for the Hamiltonian
of interacting bosons in second quantization [11] and
reexpress the bosonic single particle operator as ψ†ðxÞ ¼ffiffiffiffiffiffiffiffiffi
nðxÞp

eiθðxÞ, where nðxÞ and θðxÞ are the fluctuating
bosonic density and the phase fields, respectively.
Accounting for small density fluctuations in the standard
way [16,17], where nðxÞ ¼ nþ∇φðxÞ=π, we obtain
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H ¼ ℏ2

2m

Z
dx

��
nþ∇φ

π

�
ð∇θÞ2 þ ð∇2φÞ2

4π2n

�

þ ℏ2c
2π2m

Z
dxð∇φÞ2: ð2Þ

The fields θ and φ satisfy the commutation relation
½∇φðxÞ; θðyÞ� ¼ −iπδðx − yÞ. The Hamiltonian (2) pro-
vides an effective description of the original one, given
by Eq. (1), at momenta below ℏn. In this regime, the
fluctuations of the field∇φ are small, enabling us to use the
hydrodynamic approach.
At lowest momenta, the excitation spectrum is deter-

mined by the most relevant operators of the Hamiltonian
(2). Retaining the operators of scaling dimension two,
ð∇φÞ2 and ð∇θÞ2, we obtain the Luttinger liquid
Hamiltonian, H0. It describes the excitations with linear
spectrum εp ¼ vp, where v ¼ ðℏn=mÞγ1=2 is the sound
velocity [6]. By p we denote the momentum. It is important
to note that the Luttinger liquid Hamiltonian does not
uniquely determine statistics of quasiparticle excitations.
Indeed, H0 exactly describes both, the excitations in a
system of noninteracting (i) bosons [16] and (ii) fermions
[18] with linear dispersion. However, the theory (2) has
operators of higher scaling dimension that arise from
amplitude fluctuations of ψ . They lift the statistics
degeneracy of H0, and thus uniquely determine true
quasiparticles. At lowest momenta we must include the
leading irrelevant operator, which is the one of scaling
dimension three. The resulting Hamiltonian H0 þ
ðℏ2=2πmÞ R dxð∇φÞð∇θÞ2 is diagonalized by the fermio-
nization procedure. We obtain the low-energy spectrum

εp ¼ vpþ p2

2m� ð3Þ

with the quasiparticle mass m� ¼ 4π1=2m=3γ1=4. The quad-
ratic dispersion (3) is in agreement with the earlier result
obtained phenomenologically [14], and very recent result
[19] obtained by studying the exact solution of the
Lieb-Liniger model at weak interaction. However, unlike
in the latter study, our microscopic theory directly identifies
fermionic nature of quasiparticle excitations at lowest
momenta.
At higher momenta, operators of higher scaling dimen-

sion could be more important than the ones of lower
dimension. Omitting the operator of scaling dimension
three from the Hamiltonian (2) enables us to diagonalize it.
We obtain that it describes bosonic quasiparticles with
Bogoliubov spectrum

εp ¼ vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

4m2v2

s
: ð4Þ

Comparing the first subleading term of the two spectra (3)
and (4), we infer the crossover momentum scale [14]

p� ¼ ℏnγ3=4. At p ≪ p�, the operator of scaling dimension
three cannot be neglected. In this regime we find the
fermionic quasiparticles with the spectrum (3). At p ≫ p�,
the operator of scaling dimension four in Eq. (2) is the
leading correction to H0, yielding the spectrum (4) of
bosonic quasiparticles. In this regime the neglected oper-
ator of scaling dimension three (and many others of higher
scaling dimension) describe residual interaction of
Bogoliubov quasiparticles, which is responsible, e.g., for
the shape of the spectral function that has nondelta function
shape [20].
At momenta below the crossover momentum p0 ¼ mv,

the bosonic dispersion (4) simplifies into

εp ¼ vpþ p3

8m2v
; ð5Þ

and describes Bogoliubov phonons. Reexpressing the
asymptote as p0 ¼ ℏnγ1=2, we observe that p0 and p�,
when extrapolated to moderate interaction, cross each other
at γc ¼ 1. If such extrapolation from the weakly interacting
region γ ≪ 1 indeed holds, this would imply limited
parameter regime where phonon quasiparticles exist.
Moreover, the bosonic quasiparticles from the region above
p0, which have the spectrum [21,22]

εp ¼ p2

2m
þ γ

ℏ2n2

m
; ð6Þ

are also expected to cease together with the phonons as
interaction strength is increased. In order to address those
questions, in the following we calculate the excitation
spectrum of the model (1) at strong interaction, γ ≫ 1. We
note that in this regime the microscopic approach (2) is
inapplicable.
The model (1) is solvable by Bethe ansatz [6,10,23]. This

technique produces a set of equations that contains all the
information about the excitation spectrum. However,
extracting it explicitly is in general an involved task. For
type I excitations, the spectrum is implicitly given by

p ¼ 2πℏQ
Z

k=Q

1

dxρðxÞ; ε ¼ ℏ2Q2

m

Z
k=Q

1

dxσðxÞ;
ð7Þ

in terms of the parameter k. It satisfies k > Q, where Q is
the Fermi rapidity, defined by the condition

Q
Z

1

−1
dxρðxÞ ¼ n: ð8Þ

The two density functions in Eq. (7) can be expressed as

ρðxÞ ¼ fðxÞ þ fð−xÞ
2

; σðxÞ ¼ fðxÞ − fð−xÞ
2

; ð9Þ
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in terms of the solution of the integral equation

fðxÞ − 1

π

Z
1

−1
dy

λ

λ2 þ ðx − yÞ2 fðyÞ ¼
1

2π
þ x: ð10Þ

The function fðxÞ, and thus ρðxÞ and σðxÞ, are defined for
any real x, and depend on the dimensionless param-
eter λ ¼ c=Q.
In the Tonks-Girardeau limit, γ → ∞, and thus λ → ∞,

so Eq. (10) becomes trivial. The solution is ρ ¼ 1=2π and
σ ¼ x. From Eqs. (7) and (8) we then find p ¼ ℏðk −QÞ,
ε ¼ ðℏ2=2mÞðk2 −Q2Þ, and Q ¼ πn, which yields [9,10]

εp ¼ πℏn
m

pþ p2

2m
: ð11Þ

Equation (11) is exact for any p and describes quasiparticle
excitations in the system of bosons with contact interaction
of infinite strength. In this case the repulsion prevents two
bosons to share the same space position, acting effectively
as Pauli principle on fermions.
At moderate and strong interaction, we solve Eq. (10) by

the power series method. We assume the solution in the
form

fðxÞ ¼
X∞
n¼0

anPnðxÞ; ð12Þ

where Pn are Legendre polynomials and the coefficients an
are to be determined. At λ > jx − yj, we expand the kernel
of Eq. (10) into power series. It is convenient to introduce
Fl
n ¼ R

1
−1 dxx

lPnðxÞ. This expression is nonzero only at
l ≥ n provided lþ n is an even integer, and then it
becomes [24]

Fl
n ¼ 2nþ1l!ðlþn

2
Þ!

ðlþ nþ 1Þ!ðl−n
2
Þ! : ð13Þ

Using the orthogonality of Legendre polynomials, we
obtain the relations between the coefficients of fðxÞ,

2an
2nþ 1

¼
XM
m¼0

X2m
l¼0

Xl
r¼0

ð−1Þmþlð2mÞ!
πl!ð2m − lÞ!

ar
λ2mþ1

Fl
rF2m−l

n

þ 1

π
δn;0 þ

2

3
δn;1; M → ∞: ð14Þ

This is an infinite set of linear equations that determines an
in Eq. (12). Since r ≤ 2m in the summation in Eq. (14), all
the coefficients an for n ≥ 2 scale at least as fast as λ−n−1 at
large λ [25]. This enables us to systematically solve
Eq. (14) at finite M, which makes finite set of equations
for fa0; a1;…; a2Mg. Likewise ρðxÞ and σðxÞ, Legendre
polynomials have parity. Therefore, only the polynomials

Pn with n being even (odd) participate in the series for
ρðxÞ (σðxÞ).
At M ¼ 0, Eq. (14) leads to the spectrum as in Eq. (11)

multiplied by an overall factor of 1 − 4=γ þ 12=γ2. Already
M ¼ 1 is sufficient to obtain nontrivial corrections to the
spectrum (11), which start at order Oð1=γ3Þ. From the
solution of Eq. (10), we obtain

ρðxÞ ¼ 1

2π
þ 1

π2λ
þ 2

π3λ2
þ 12 − π2

3π4λ3
þ 8 − 2π2

π5λ4

− x2
�

1

π2λ3
þ 2

π3λ4

�
þOðλ−5Þ; ð15Þ

σðxÞ ¼ x

�
1þ 4

3πλ3

�
þOðλ−5Þ: ð16Þ

Using Eq. (8) we now find the inverse series
λ ¼ ðγ þ 2Þ=π − 4π=3γ2 þ 16π=3γ3 þOðγ−4Þ, while
Q ¼ γn=λ can be easily expressed as a function of γ.
Finally, elementary algebra with Eq. (7) leads to the low-
momentum dispersion

εp ¼ vpþ p2

2m� þ
�
8π

3γ3
−
80π

3γ4

�
p3

ℏnm

þ
�

2

3γ3
−

20

3γ4

�
p4

ℏ2n2m
þOðγ−5Þ: ð17Þ

Here the sound velocity is given by v ¼ πℏn=mK, where
the Luttinger liquid parameter takes the value

K ¼ 1þ 4

γ
þ 4

γ2
−
16π2

3γ3
þ 32π2

3γ4
þOðγ−5Þ: ð18Þ

The mass is given by m=m� ¼ 1 − 4=γ þ 12=γ2 þ ð32π2
−96Þ=3γ3 − ð320π2 − 240Þ=3γ4 þOðγ−5Þ. This result is in
agreement with the exact relation for the model (1),

m
m� ¼ ð1 − γ∂γÞ

1ffiffiffiffi
K

p ; ð19Þ

which could be obtained from a more general expression
one finds in Refs. [14,28].
The spectrum (17) contains the leading order terms in the

asymptotic expansion at momenta p ≪ p�
0, where

p�
0 ¼ ℏnγ. The origin for this limitation is the condition

on λ that we required in order to expand the kernel of the
integral equation (10). We note that the quantities that
involve ρðxÞ and σðxÞ only for jxj < 1, such as the ground
state energy or the spectrum of type II excitations, in
principle do not have any limitation already at λ > 2
(corresponding to γ > 4.527), provided one solves
Eq. (14) at arbitrary λ. However, here we solved
Eq. (14) using a large λ expansion. We have verified that
the set of equations (14) when solved forM > 1, only leads
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to changes in Eqs. (15) and (16) and all subsequent
expression starting from the order Oðγ−5Þ. In Supple-
mental Material [25] we give analytical expressions
of relevant quantities for the Lieb-Liniger model at
high order.
At sufficiently high momenta, the upper limit of inte-

gration in Eq. (7) exceeds λ, and therefore for so high
momenta the expansion (12) cannot be used. Instead, we
find the solution of Eq. (10) by iterations, which leads to

ρðxÞ ¼ 1

2π

�
1þ λ

arctan λ
1

ðx2 þ λ2Þ
�
; ð20Þ

σðxÞ ¼ x

�
1þ arctan 2λ

λ2þx2−1
π

�
þ λ

2π
ln
ð1 − xÞ2 þ λ2

ð1þ xÞ2 þ λ2
:

ð21Þ

We easily verify that Eq. (21) at large λ is in agreement with
the result (16). On the other hand, Eq. (20) agrees with
Eq. (15) to order Oðλ−2Þ. We have checked that the next
iteration of Eq. (20) in the initial integral equation produces
such ρðxÞ that agrees with Eq. (15) to order Oðλ−3Þ.
Therefore, the low momentum spectrum (17) could be
also reproduced from the densities obtained by the iteration
procedure.
Using the density (20) in Eq. (7), we obtain

p ¼ ℏk − ℏQ
arctan λQ

k

arctan λ
: ð22Þ

At high p, the parameter k is also large, and thus the second
term of Eq. (22) can be neglected. Furthermore, ε from
Eq. (7) in the leading order is determined from the region of
large x, where Eq. (21) becomes σðxÞ ¼ xþOðx−3Þ.
Therefore, in the leading order we obtain the expected
result at high momenta, εp ¼ p2=2m. A more careful way
is to substitute Eq. (21) in Eq. (7), resulting in

ε ¼ ℏ2ðk2 −Q2Þ
2m

�
1þ

arctan 2λ
χ2þλ2−1

π

�

þ ℏ2n2γ2

2πm

�
arctan

2χ2 − 2

λðχ2 þ λ2 þ 3Þ þ
ln ð1þ 4

λ2
Þ

λ

þ χ

λ
ln
ðχ − 1Þ2 þ λ2

ðχ þ 1Þ2 þ λ2

�
; χ ¼ k

Q
: ð23Þ

In the limiting case of high momenta, p ≫ p�
0, Eqs. (22)

and (23) give

εp ¼ p2

2m
þ 2γ

ℏ2n2

m
−
π2ℏ2n2

2m
þO

�
1

p2

�
; ð24Þ

in agreement with the original work [10]. However, the
analytical expressions (22) and (23) are the dispersion

relation of the Lieb-Liniger model, at arbitrary momentum
and for λ being moderate and large. In Fig. 1 we show the
full dispersion curve and compare it with the limiting
expressions (17) and (24).
We are now in position to distinguish the excitation

spectrum of the Lieb-Liniger model in several regions of
the momentum-interaction plane, see Fig. 2. At smallest
momenta, corresponding to regions I and III, the system is
characterized by a linear dispersion with the quadratic
correction controlled by the mass m�. This is in agreement
with earlier phenomenological and Bethe ansatz studies
[14,19]. As follows from our microscopic theory (2), at
weak interaction the low-momentum excitations are fer-
mionic quasiparticles. It is quite expected that the same
quasiparticles extend to region I, since the two spectra (3)
and (17) have the same form [29]. The massm� depends on
the interaction strength as given by Eq. (19). At momenta
above p�

0, the quasiparticle mass decreases, becoming the
bare mass of original particles, m. We note that this change

10

20

30

40

50

60

εp

p

= 10
= 3.7932

Q = 1
2

2m = 1

1 2 3 4 5 6 7

FIG. 1 (color online). The dispersion curve for the Lieb-Liniger
model at γ ¼ 10 is represented by solid line, see Eqs. (22) and (23).
Dashed lines are the two limiting cases, Eqs. (17) and (24). Doted
line is given for comparison, and represents the limiting spectrum
at γ → ∞, Eq. (11). In the units used for the plot, p�

0 ¼ λ.

c0

p

p c

(17)

(24)

(3)

(6)

(5)

p 0

p 0

p

FIG. 2 (color online). The spectrum of elementary excitations in
the Lieb-Liniger model has its characteristic form in five regions of
the momentum-interaction plane. The number in parentheses
denotes the number of equation where the limiting form of the
spectrum is given. In regions I, II, and III, elementary excitations
are fermionic quasiparticles, while IV and V they are bosonic
quasiparticles. The crossover momenta are p� ∼ γ3=4, p0 ∼ γ1=2,
and p�

0 ∼ γ, see the main text. As we neglected the pure numbers in
all the asymptotes, γc ¼ 1, corresponding to pc ¼ ℏn.
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of the mass is accompanied with the disappearance of the
linear term in the dispersion, cf. Eqs. (17) and (24).
At higher momenta, the cubic correction in the spectrum

may become dominant with respect to the quadratic one.
This indeed occurs at weak interaction, where fermionic
quasiparticles (region III) transform into Bogoliubov pho-
nons (region IV) as the momentum is increased [19]. At
strong interaction, such change in the nature of quasipar-
ticles does not occur. As follows from Eq. (17), the
crossover momentum where this would happen is at
momenta above p�

0, deeply in region II. Thus, at strong
interaction there is no space for bosonic quasiparticles to
develop. The only possibility is to have the dispersion
crossover region between quasiparticles of the same sta-
tistics, which happens at p�

0.
We finally note that Bogoliubov quasiparticles at high

momenta exist at weak interaction, see region V in Fig. 2.
Those quasiparticles are expected to exist as long as
Bogoliubov phonons at lower momenta are present. The
first subleading term of the quasiparticle dispersion in
regions V and II are different, cf. Eqs. (24) and (6). This is
consistent with the picture of fermionic quasiparticles at
strong interaction, which due to Pauli principle are
expected to have higher energy than the bosonic ones of
the same momentum.
The excitation spectrum of a three-dimensional Bose-

Einstein condensate is measured by Bragg spectroscopy
[30] in both limits of weak [3] and strong interaction [31].
In principle, the same technique could be used to probe
the spectrum of the Lieb-Liniger model. Knowledge of the
spectrum can be used to find the singularities in the
dynamic structure factor [14]. It is peaked and diverges
in the vicinity of type I excitation branch as a power law,
with different exponents in the fermionic and bosonic
regions (see Fig. 2). We finally notice that in the presence
of integrability breaking perturbations (always present in
realistic conditions), this peak becomes broadened. Such
effect is intimately connected to the quasiparticle decay
rate, which has different scaling with momentum in the
fermionic [32] and the phononic regions [33]. This is yet
another manifestation of the change of quasiparticle sta-
tistics which could be tested by Bragg spectroscopy [34].
The power series method could be used to obtain other

relevant quantities of the Lieb-Liniger model. For example,
the ground state energy can be expressed as E0 ¼
ðℏ2n2N=2mÞeðγÞ, where eðγÞ ¼ ðγ3=λ3Þ R 1

−1 dxx
2ρðxÞ,

see Ref. [6]. Using Eq. (15), we find eðγÞ¼π2=3−4π2=
3γþ4π2=γ2−32π2ð15−π2Þ=45γ3−16π2ð4π2−15Þ=9γ4þ
Oðγ−5Þ. The first four terms in eðγÞ are in agreement with
Ref. [35]. At strong interaction, from the spectrum (17) of
type I excitations one directly obtains the spectrum type II
excitations as ~εp ¼ −ε−p. The latter excitations branch is
recently studied in Ref. [36].
In conclusion, we calculated the excitation spectrum of

the Lieb-Liniger model using the microscopic theory and

the exact solution. At arbitrary interaction, the quasiparticle
excitations at small momenta are characterized by the mass
m� that is always larger than the mass of original particles.
Our results give strong evidence that fermionic quasipar-
ticles actually exist in a huge parameter range. Bosonic
Bogoliubov quasiparticles are present only at weak
interaction. Understanding the physics near the boundary
region between the fermionic and bosonic quasiparticles,
see Fig. 2, is a challenging problem. Our results have
direct application to the dual Cheon-Shigehara model
[20,37,38].
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