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We report a new class of tunable and switchable acoustic metamaterials comprising resonating units
dispersed into an elastic matrix. Each resonator consists of a metallic core connected to the elastomeric
matrix through elastic beams, whose buckling is intentionally exploited as a novel and effective approach to
control the propagation of elastic waves. We first use numerical analysis to show the evolution of the locally
resonant band gap, fully accounting for the effect of nonlinear pre-deformation. Then, we experimentally
measure the transmission of vibrations as a function of the applied loading in a finite-size sample and find
excellent agreement with our numerical predictions. The proposed concept expands the ability of existing
acoustic metamaterials by enabling tunability over a wide range of frequencies. Furthermore, we
demonstrate that in our system the deformation can be exploited to turn on or off the band gap, opening
avenues for the design of adaptive switches.
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Artificially structured composite materials that enable
manipulation and control of elastic waves have received
significant interest in recent years [1], not only because of
their rich physics, but also for their broad range of
applications, including wave guiding [2–7], cloaking [8]
and noise reduction [9–11]. An important characteristic of
these heterogeneous systems is their ability to tailor the
propagation of elastic waves due to the existence of band
gaps—frequency ranges of strong wave attenuation. In
phononic crystals, band gaps are generated by Bragg
scattering [12], whereas in acoustic metamaterials, local-
ized resonance within the medium is exploited to attenuate
the propagation of waves. Analogous to the case of
photonic crystals where split-ring resonators have been
embedded within a medium to excite electromagnetic
resonances [13,14], in acoustic metamaterials the internal
resonance is typically realized by dispersing heavy inclu-
sions coated with a soft layer into a matrix [15].
Interestingly, acoustic metamaterials are capable of
manipulating waves with wavelengths much larger than
the structural features of the system [15] and have been
successfully exploited for vibration control [16,17], imag-
ing [18], design of exotic elastic solids [19,20], and thermal
management [21].
Most of the phononic and acoustic metamaterial con-

figurations proposed to date are characterized by a passive
response and operate at fixed frequency ranges, limiting the
number of possible applications. In an effort to design
tunable systems, it has been shown that Bragg-type band
gaps can be controlled by instability-induced pattern trans-
formations [22–24]. On the other hand, for acoustic
metamaterials, tuning of functionalities has been achieved
by altering the resonant frequency via piezoshunting [25],

adaptive connectivity [26], and fluid-structure inter-
actions [27].
Here, we report a new class of adaptive acoustic

metamaterials whose response is controlled by mechanical
deformation. In the proposed metamaterial, the elastomeric
coating that typically surrounds the resonating mass is
replaced by easy-to-buckle elastic beams, as shown in
Fig. 1(a). When the system is compressed statically, these
beams buckle at a relatively low level of applied uniaxial

FIG. 1 (color online). Tunable acoustic metamaterial: (a) The
undeformed configuration comprises resonating units dispersed
into an elastomeric matrix. Each resonator consists of a metallic
mass connected to the matrix through elastic beams, which form a
structural coating. The black regions in the picture indicate voids
in the structure. The unit cell size is A0 ¼ 50.0 mm. (b) When a
compressive strain ε ¼ −0.10 is applied in the vertical direction,
buckling of the beams significantly alters the effective stiffness of
the structural coating, which in turn changes the band gap
frequency.
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strain ε, as seen in Fig. 1(b) for ε ¼ −0.1. Interestingly,
buckling dramatically alters the stiffness of the beams and
consequently the natural frequency of the resonating units,
which in turn determines the frequency range of the
band gap.
Through a combination of analyses and experiments, we

demonstrate that elastic instability and deformation can be
exploited to effectively tune and even completely suppress
the band gaps of the system. Hence, the metamaterial can
be used as an acoustic switch that provides on or off
capabilities.
To fully understand the effect of deformation on the

propagation of small amplitude elastic waves in the
proposed acoustic metamaterial, we focus on the elastic
system shown in Fig. 1 (the structure is uniform in the out-
of-plane dimension with height of 50.0 mm). Here we
consider a square array of locally resonant unit cells with
center-to-center distance A0 ¼ 50.0 mm, but the response
of the system is not affected by the spatial arrangement of
the resonators [28,29]. Each resonating unit comprises (i) a
portion of the elastomeric matrix, (ii) a metallic circular
core with radius R0 ¼ 7.9 mm, and (iii) four beams with
length L0 ¼ 16.9 mm and thickness t0 ¼ 1.8 mm that
connect the metallic core to the matrix.
Both the beams and the matrix are made of silicon rubber

(Elite Double 32, Zhermack) with measured shear modulus
μ0 ¼ 4.44 × 105 N=m2, Poisson’s ratio ν0 ¼ 0.499, and
density ρ0 ¼ 1050 kg=m3 (so that in the undeformed
homogeneous material the elastic wave speeds are cT ¼
20.6 m=s and cL ¼ 460.1 m=s for shear and pressure
waves, respectively). Differently, the metallic cores are
built using copper rods (with shear modulus μCu ¼
4.78 × 1010 N=m2, Poisson’s ratio νCu ¼ 0.34 and density
ρCu ¼ 8960 kg=m3).
We first investigate the effect of uniaxial compression on

the static and dynamic responses of the system via finite
element (FE) simulations using the commercial software
ABAQUS/STANDARD. In the simulations we focus on a
representative volume element comprising a single reso-
nating unit [see Fig. 2(a)] and use periodic and Bloch-type
boundary conditions for the static and dynamic analyses
[23], respectively. Two-dimensional (2D) models are con-
structed using quadrilateral plane strain hybrid quadratic
elements (Abaqus element type CPE8 H) and the response
of the elastomeric matrix is described by a nearly incom-
pressible Neo-Hookean model with initial shear modulus
μ0 and Poisson’s ratio ν0.
To begin with, we focus on the static response of the unit

cell and perform a linear perturbation analysis to investigate
the stability of the beams. A local instability is detected at
εcr ¼ −0.0247, associated with buckling of the two vertical
beams. The postbuckling response of the system is then
simulated by introducing small random imperfections into
the initial geometry and performing a nonlinear static
analysis. Snapshots of the deformed configurations at

different levels of the applied strain are shown in
Fig. 2(a). As predicted by the stability analysis, when
the structure is compressed uniaxially in the vertical
direction, the two vertical beams buckle at εcr.
Moreover, the buckling of vertical beams is also accom-
panied by rotation of the metallic core that, in turn, results
in the stretching of the two horizontal beams. In Figs. 2(b)
and 2(c) we show the significant effect of the applied
deformation on the axial and tangential forces transmitted
by the beams to the matrix. Initially, most of the load is
carried by the two vertical beams in their axial direction.
However, after the onset of instability the axial stress in the
vertical beams is found to plateau, while both the axial and
tangential force components transmitted by the horizontal
beams significantly increase due to their stretching induced
by the rotation of the metallic core. Hence, our results
indicate that the applied deformation significantly alters the
effective stiffness of the resonator.
Next, we numerically investigate the effect of such

change in effective stiffness on the propagation of small
amplitude elastic waves. For this, we calculate the
dispersion relations for both the undeformed and deformed
configurations using frequency domain analyses, fully
accounting for the effect of precompression [23,29].
In Fig. 3(a) we report the dispersion relation of the

metamaterial in the undeformed configuration, while in
Fig. 3(b) the Bloch mode shapes of the four lowest bands at
the high-symmetry points, X, M, and Y of the Brillouin
zone are shown [29]. For clarity, in Fig. 3(a) we use red

FIG. 2 (color online). Static response: (a) Distribution of the
normalized Von Mises stress, σVM=μ0 at different levels of
applied strain ε. (b) Effect of the applied deformation on the
reaction force transmitted by the vertical beams to the matrix. The
normalized reaction forces acting both in axial (normal compo-
nent), Snormal ¼ Rnormal=ðt0μ0Þ, and tangential (shear component),
Sshear ¼ Rshear=ðt0μ0Þ, are reported, Rnormal and Rshear denoting
the total reaction force measured at the end of the beam in the
normal and tangential directions, respectively. (c) Effect of the
applied deformation on the force transmitted by the horizontal
beams to the matrix.
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and blue lines to represent pressure-dominated (longi-
tudinal) and shear-dominated (transversal) wave modes,
respectively. Interestingly, the first three modes at X, M,
and Y show a strong localization of vibration, with only the
metallic core vibrating and the matrix mostly at rest. By
contrast, the fourth mode at X,M, and Y points has a global
nature, since the entire matrix vibrates while the modal
displacement of metallic core is negligible. We note that

similar modal patterns have been observed not only in
acoustic metamaterials [15,34], but also in photonic crys-
tals [35]. Further inspection of the modes reveals that the
first localized mode [black line in Fig. 3(a)] is purely
rotational, so that it has a very weak coupling with the
propagating shear and pressure waves and does not open a
band gap [34]. Differently, in the second and third modes
the resonators interact with the shear and pressure waves,
respectively. This coupling between the vibration of the
metallic core and the propagating waves in the media
generates a band gap, highlighted by the grey area in
Figs. 3(a) and 3(c). Finally, we note that, although our
numerical results indicate an anisotropy in the modes [see
mode 2 in Fig. 3(b)], the locally resonant band gap is an
omnidirectional complete gap.
The effect of deformation on the propagation of elastic

waves is shown in Figs. 3(c) and 3(d) for ε ¼ −0.065 and
in Figs. 3(e) and 3(f) for ε ¼ −0.1. Under small ε, the
softening of the two vertical beams induced by buckling
is found to dominate over the stiffening of the two
horizontal beams induced by their stretching, so that the
band gap frequency decreases, as shown in Fig. 3(c).
However, due to the increase in tangential stiffness
induced by instability, the rotational mode rises above
the shear and pressure modes [see Fig. 3(d)] and splits
the band gap. If we further increase the applied strain to
ε ¼ −0.10, the band gap then completely closes because of
the modal transformation of the rotational band near the G
point [see Fig. 3(e)]. Therefore, our results clearly dem-
onstrate that the proposed metamaterial acts as a reversible
phononic switch, since the applied deformation can be
exploited to tune and switch the band gap on or off.
To validate the numerical predictions, a sample of the

locally resonant metamaterial comprising 6 × 3 unit cells
(see Fig. 1) is fabricated using silicon rubber (Elite
Double 32, Zhermack) and a mold-casting process with
the mold prepared by 3D rapid prototyping. We first
apply the desired level of strain ε using a fixture made of
acrylic plates and nylon bolts or nuts. Next, wave
propagation in the sample is excited by an electrody-
namic shaker (model K2025E013, Modal Shop), which is
directly connected to one end of the sample to provide a
white noise input signal over a broadband frequency
range. The dynamic response at different levels of applied
strain ε is recorded using two miniature accelerometers
(352C22, PCB Piezotronics) attached to both ends of the
sample and the transmittance is computed as the ratio
between the output and input acceleration signals
(i.e., ∥AoutðωÞ=AinðωÞ∥).
In Fig. 4(a) we report the transmittance of the sample

measured at ε ¼ 0.0;−0.065, and −0.10. In the unde-
formed configuration (i.e., ε ¼ 0.0) a significant drop in
the transmittance is observed between 80 Hz and 100 Hz
with a pronounced minimum at 95 Hz, which corresponds
to the resonance frequency of vibration localization. Note

FIG. 3 (color online). Effect of the applied deformation on the
band structure: Dispersion relations from Bloch-wave analysis
for the infinite metamaterial in (a) the undeformed configuration
and under uniaxial compressive strain (c) ε ¼ −0.065 and (e)
ε ¼ −0.10. Shear dominated bands are colored in blue, pressure
dominated bands in red and locally rotational bands in black. The
grey region in (a) and (c) highlights the band gap induced by local
resonance. The Bloch modes of the lowest four bands at high-
symmetry points of the Brillouin zone (X, M, and Y ) [29] are
shown in (b), (d), and (f) for ε ¼ 0.0;−0.065, and −0.10,
respectively. The distribution of the magnitude of the modal
displacement field is shown.
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that in finite-size locally resonant metamaterials the lowest
transmittance is usually observed at the resonant frequency
of the embedded resonators, which corresponds to the
lower edge of the band gap predicted by the dispersion
relation [15]. This result not only proves the existence of
the band gap predicted by the simulations, but also
quantitatively agrees with the FE results in which the
lower edge of the band gap (i.e., the frequency with
strongest resonance) was observed at 92 Hz [see
Fig. 3(a)]. Moreover, as predicted by the numerical results,
when a uniaxial strain ε is applied, the experimentally
measured band gap is found to shift towards lower
frequencies. In particular, for ε ¼ −0.065 the drop in
the transmittance is shifted to the range of 60–85 Hz, with
the minimum at 76 Hz. We also note that the band gap
splitting predicted at ε ¼ −0.065 by the FE simulations
[see Fig 3(c)] is not observed in the measured trans-
mittance. This discrepancy is attributed to finite-size
effects such as boundary effects and nonuniform distri-
bution of the predeformation, which are not fully

accounted for in the simulations. Lastly, for ε ¼ −0.10,
the measured transmittance shows no band gap, confirm-
ing that the proposed metamaterial can be utilized as a
phononic or acoustic switch.
The comparison between the resonant band gap fre-

quency predicted by simulations and experiments as a
function of the applied strain ε is presented in Fig. 4(b). The
markers and error bars represent the lowest transmittance
frequency and the �3 dB band gap width measured
experimentally, respectively. Moreover, the dashed line
indicates the frequency of the lower edge of the band
gap calculated numerically for the corresponding infinite
system. Remarkably, we find excellent agreement between
the two sets of data. Both experiments and simulations
predict the band gap frequency first to decrease linearly as a
function of ε and then the band gap to completely disappear
as ε approaches −0.10.
In summary, we demonstrated both numerically and

experimentally that large deformation and local instability
can be exploited to effectively control the response of
locally resonant acoustic metamaterials. This remarkable
behavior is achieved by introducing a structural coating
comprising an array of elastic and highly deformable
beams. Our results indicate that under externally applied
load the stiffness of the beams varies significantly due to
their buckling, altering the resonant frequency of the unit
and providing a wide range of tunability for the band gap
(∼30% in frequency). Furthermore, we showed that the
proposed metamaterial can be utilized as an on or off
acoustic switch, since a moderate level of applied uniaxial
strain (ε ∼ −0.10) is enough to entirely suppress the band
gap. Although in this Letter we only verified the concept
with one specific set of material and geometric parameters,
the response of the system is robust. Numerical parametric
studies have also been performed by changing the arrange-
ment of the resonating units, the number of beams in the
structural coating, their slenderness, and the constitutive
behavior of the matrix [29]. Our results indicate that the
proposed mechanism works over a wide range of param-
eters, opening avenues for the design of smart systems that
control the wave propagation depending on the applied
deformation.

This work has been supported by Harvard MRSEC
through Grant No. DMR-0820484 and by NSF through
Grants No. CMMI-1120724 and No. CMMI-1149456
(CAREER). K. B. acknowledges start-up funds from the
Harvard School of Engineering and Applied Sciences and
the support of the Kavli Institute and Wyss Institute at
Harvard University.

*Corresponding author.
bertoldi@seas.harvard.edu

[1] M. Hussein, M. Leamy, and M. Ruzzene, Appl. Mech. Rev.
66, 040802 (2014).

FIG. 4 (color online). Effect of the applied deformation on the
band gap frequency: (a) Experimentally measured transmittance
in a sample with 6 × 3 unit cells (see Fig. 1) at different levels of
applied prestrains. (b) Evolution of the resonant band gap
frequency as a function of the applied strain, ε. The markers
and error bars represent the lowest transmittance frequency and
the �3 dB band gap width measured experimentally. The dashed
line indicates the lower edge of the band gap (i.e., frequency of
resonance) predicted by the FE simulations for the corresponding
infinite system.

PRL 113, 014301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 JULY 2014

014301-4

http://dx.doi.org/10.1115/1.4026911
http://dx.doi.org/10.1115/1.4026911


[2] A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani,
and V. Laude, Appl. Phys. Lett. 84, 4400 (2004).

[3] M. Kafesaki, M. M. Sigalas, and N. Garcia, Phys. Rev. Lett.
85, 4044 (2000).

[4] A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier,
P. Lambin, and L. Dobrzynski, Phys. Rev. B 65, 174308
(2002).

[5] J.-H. Sun and T.-T. Wu, Phys. Rev. B 71, 174303 (2005).
[6] J.-H. Sun and T.-T. Wu, Phys. Rev. B 76, 104304 (2007).
[7] J. O. Vasseur, A. Hennion, B. Rouhani, F. Duval, B. Dubus,

and Y. Pennec, J. Appl. Phys. 101, 114904 (2007).
[8] S. Cummer and D. Schurig, New J. Phys. 9, 45 (2007).
[9] D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C.

Marquardt, and G. Leuchs, Phys. Rev. Lett. 97, 133901
(2006).

[10] T. Elnady, A. Elsabbagh, W. Akl, O. Mohamady, V. M.
Garcia-Chocano, D. Torrent, F. Cervera, and J. Sánchez-
Dehesa, Appl. Phys. Lett. 94, 134104 (2009).

[11] F. Casadei, L. Dozio, M. Ruzzene, and K. Cunefare, J.
Sound Vib. 329, 3632 (2010).

[12] C. Kittel, Am. J. Phys. 35, 547 (1967).
[13] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser,

and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[14] P. Gay-Balmaz and O. J. F. Martin, J. Appl. Phys. 92, 2929

(2002).
[15] Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, and P.

Sheng, Science 289, 1734 (2000).
[16] L. Airoldi and M. Ruzzene, New J. Phys. 13, 113010

(2011).
[17] F. Casadei, B. Beck, K. A. Cunefare, and M. Ruzzene, Int. J.

Solids Struct. 23, 1169 (2012).
[18] D. Bigoni, S. Guenneau, A. B. Movchan, and M. Brun,

Phys. Rev. B 87, 174303 (2013).
[19] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun,

and X. Zhang, Nat. Mater. 5, 452 (2006).

[20] Y. Lai, Y. Wu, P. Sheng, and Z. Zhang, Nat. Mater. 10, 620
(2011).

[21] B. L. Davis and M. I. Hussein, Phys. Rev. Lett. 112, 055505
(2014).

[22] K. Bertoldi and M. C. Boyce, Phys. Rev. B 77, 052105
(2008).

[23] P. Wang, J. Shim, and K. Bertoldi, Phys. Rev. B 88, 014304
(2013).

[24] S. Rudykh and M. C. Boyce, Phys. Rev. Lett. 112, 034301
(2014).

[25] F. Casadei, T. Delpero, A. Bergamini, P. Ermanni, and M.
Ruzzene, J. Appl. Phys. 112, 064902 (2012).

[26] A. Bergamini, T. Delpero, L. De Simoni, L. Di Lillo, M.
Ruzzene, and P. Ermanni, Adv. Mater. 26, 1472 (2014).

[27] F. Casadei and K. Bertoldi, J. Appl. Phys. 115, 034907
(2014).

[28] Z. Liu, C. T. Chan, and P. Sheng, Phys. Rev. B 65, 165116
(2002).

[29] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.113.014301 for details
of numerical procedures and additional parametric studies,
which includes Refs. [24,30–33].

[30] L. Brillouin, Wave Propagation in Periodic Structures
(McGraw-Hill, New York, 1946).

[31] M. Maldovan and E. Thomas, Periodic Materials and
Interference Lithography for Photonics, Phononics and
Mechanics (Wiley-VCH, Weinheim, 2009).

[32] A. Gent, Rubber Chem. Technol. 69, 59 (1996).
[33] L. Treloar, Trans. Faraday Soc. 40, 59 (1944).
[34] G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, Phys. Rev.

Lett. 93, 154302 (2004).
[35] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D.

Meade, Photonic Crystals: Molding the Flow of Light
(Princeton University Press, Princeton, NJ, 2008),
2nd ed., p. 70.

PRL 113, 014301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 JULY 2014

014301-5

http://dx.doi.org/10.1063/1.1757642
http://dx.doi.org/10.1103/PhysRevLett.85.4044
http://dx.doi.org/10.1103/PhysRevLett.85.4044
http://dx.doi.org/10.1103/PhysRevB.65.174308
http://dx.doi.org/10.1103/PhysRevB.65.174308
http://dx.doi.org/10.1103/PhysRevB.71.174303
http://dx.doi.org/10.1103/PhysRevB.76.104304
http://dx.doi.org/10.1063/1.2740352
http://dx.doi.org/10.1088/1367-2630/9/3/045
http://dx.doi.org/10.1103/PhysRevLett.97.133901
http://dx.doi.org/10.1103/PhysRevLett.97.133901
http://dx.doi.org/10.1063/1.3111797
http://dx.doi.org/10.1016/j.jsv.2010.04.003
http://dx.doi.org/10.1016/j.jsv.2010.04.003
http://dx.doi.org/10.1119/1.1974177
http://dx.doi.org/10.1103/PhysRevLett.84.4184
http://dx.doi.org/10.1063/1.1497452
http://dx.doi.org/10.1063/1.1497452
http://dx.doi.org/10.1126/science.289.5485.1734
http://dx.doi.org/10.1088/1367-2630/13/11/113010
http://dx.doi.org/10.1088/1367-2630/13/11/113010
http://dx.doi.org/10.1177/1045389X12443014
http://dx.doi.org/10.1177/1045389X12443014
http://dx.doi.org/10.1103/PhysRevB.87.174303
http://dx.doi.org/10.1038/nmat1644
http://dx.doi.org/10.1038/nmat3043
http://dx.doi.org/10.1038/nmat3043
http://dx.doi.org/10.1103/PhysRevLett.112.055505
http://dx.doi.org/10.1103/PhysRevLett.112.055505
http://dx.doi.org/10.1103/PhysRevB.77.052105
http://dx.doi.org/10.1103/PhysRevB.77.052105
http://dx.doi.org/10.1103/PhysRevB.88.014304
http://dx.doi.org/10.1103/PhysRevB.88.014304
http://dx.doi.org/10.1103/PhysRevLett.112.034301
http://dx.doi.org/10.1103/PhysRevLett.112.034301
http://dx.doi.org/10.1063/1.4752468
http://dx.doi.org/10.1002/adma.201470060
http://dx.doi.org/10.1063/1.4862643
http://dx.doi.org/10.1063/1.4862643
http://dx.doi.org/10.1103/PhysRevB.65.165116
http://dx.doi.org/10.1103/PhysRevB.65.165116
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.014301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.014301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.014301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.014301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.014301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.014301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.014301
http://dx.doi.org/10.5254/1.3538357
http://dx.doi.org/10.1039/tf9444000059
http://dx.doi.org/10.1103/PhysRevLett.93.154302
http://dx.doi.org/10.1103/PhysRevLett.93.154302

