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We implement the squeezing operation as a genuine quantum gate, deterministically and reversibly
acting “online” upon an input state no longer restricted to the set of Gaussian states. More specifically,
by applying an efficient and robust squeezing operation for the first time to non-Gaussian states, we
demonstrate a two-way conversion between a particlelike single-photon state and a wavelike superposition
of coherent states. Our squeezing gate is reliable enough to preserve the negativities of the corresponding
Wigner functions. This demonstration represents an important and necessary step towards hybridizing
discrete and continuous quantum protocols.
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From a fundamental point of view, quantum states of
light can behave in a complementary fashion, showing
both particlelike and wavelike behavior. With regards to
an application such as quantum computing, an important
proposal for universally processing photonic qubits [1]
makes use of quantum particle detections (i.e., photon
counting) and quantum wave evolutions (i.e., quantum
interferences through passive, energy-preserving linear
optical circuits). In this scheme, however, the required
ancilla states consist of many highly entangled photons and
thus are out of reach of current experimental capabilities.
It is therefore reasonable to extend the toolbox of optical
quantum operations in order to reduce the cost of the
necessary quantum resources. For instance, apart from
discrete “click by click” measurements that rely on the
particlelike nature of light [2], quantum light fields may be
detected more naturally via continuous phase-space mea-
surements exploiting their wavelike features [3]. In fact,
two recent continuous-variable teleportation experiments
on non-Gaussian input states, using Gaussian entanglement
and Gaussian homodyne measurements, demonstrate that
not only a wavelike coherent-state superposition (CSS) [4],
but also a particlelike photonic qubit [5] can be transferred
efficiently and reliably, preserving the negativity of the
Wigner function and exceeding the classical fidelity limits,
respectively.
In order to further investigate the potential of such

hybrid schemes [6], which simultaneously exploit discrete
and continuous techniques for encoding, measuring, and
processing quantum states of light, it is desirable, besides
Gaussian measurements and resource states, to also add
Gaussian gate operations to the set of possible optical
elements for processing photonic qubits. Indeed, one

feasible regime of single-photon operations has still
remained unexplored: Gaussian operations including active
squeezers, still linearly transforming the mode operators,
but no longer preserving energy.
The squeezing operation has been traditionally associ-

ated with continuous-variable quantum optics and infor-
mation [7–9]. In fact, it can be considered the essential,
elementary operation of this area, as it is a necessary
component of all Gaussian gates [10] and even some non-
Gaussian gates require it for their implementation [11].
The construction of a genuine squeezing gate is funda-
mentally different from simply preparing a particular
squeezed state. This basic difference was previously
addressed in an experiment employing a measurement-
based protocol [12]. Later, this scheme was extended to
more advanced Gaussian gates by using the squeezers [12]
as their fundamental building blocks: a quantum non-
demolition sum gate [13], which may be understood as
a continuous-variable version of the controlled-NOT gate
for qubits, and a reversible phase-insensitive amplification
(two-mode squeezing) gate [14], which also functions as
an approximate cloner for coherent-state inputs. However,
in all these previous demonstrations, only Gaussian states
have been used for the inputs. One reason for this is of a
technical nature: the bandwidth of the squeezing gate is
typically very narrow and there has been no way so far to
generate highly nonclassical, non-Gaussian states in such
a narrow frequency band. Moreover, these non-Gaussian
states tend to be extremely sensitive to losses, and thus,
coupling them directly into an optical parametric oscillator
will easily erase any signature of their strong nonclassi-
cality such as the negativity of the Wigner function. Our
demonstration here was made possible by introducing a
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recent technique for bandwidth broadening as well as a
mechanism for increased loss robustness to the squeezing
gate [4].
We experimentally demonstrate for the first time a

deterministic squeezing gate that operates on non-
Gaussian input states. In particular, in what we believe
to be a nice illustration, we use a particlelike single-photon
state as the input state of the squeezing gate. The resulting
output state then is a wavelike CSS. Since single-mode
squeezing corresponds to a unitary, noiseless amplification
process along a certain phase-space direction, our single-
photon squeezer can be also interpreted as a phase-sensitive
amplifier acting on an optical field mode in its first excited
state (for a more detailed discussion of this interpretation,
see the Supplemental Material [15]).
Furthermore, we also demonstrate the inverse operation

of the squeezer, where a wavelike CSS is converted into a
particlelike single-photon state. From a more fundamental
point of view, what we demonstrate here can be considered
an unconditional and reversible two-way conversion
between a single quantum particle and a nonclassical,
continuous wave. Unlike the previous probabilistic con-
version from a photon number state to a CSS [16], the
squeezing gate deterministically and reversibly transforms
a single photon into a CSS. The CSS, jαi − j − αi, where
jαi is a coherent state [3], is a highly nonclassical quantum
state sufficient for universal quantum computation [17].
It is worth noting that an all-optical, high-purity, almost-on-
demand single-photon source was reported recently [18],
while no such source has ever been demonstrated for a CSS
state. Therefore, our unconditional conversion between
these two types of states means that, in principle, all such
quantum resources, including CSS states, are now available
nearly on demand.
We believe that this experiment paves the way for

quantum applications that combine discrete-particle and
continuous-wave protocols in a so-called hybrid fashion.
The squeezing-gate operation when acting on non-
Gaussian states has also a number of direct applications,
such as quantum state discrimination of optical coherent-
state qubits [19], Gaussian optimization in non-Gaussian
state preparation [20], improved quantum state transmis-
sion through a lossy channel [21], and preprocessing before
a light-matter coupling for an efficient quantum memory
interface [22]. Recently, it has been also realized that
squeezing is an extremely useful tool for manipulating
and measuring individual photons, for instance, in squeez-
ing-enhanced Bell measurements of optical qubits [23] or
in squeezing-enhanced entanglement distillation protocols
where optical Gaussian states are locally transformed into
qubit Bell pairs [24,25].
The schematic of our experimental setup is shown in

Fig. 1. It consists of two parts: a source of nonclassical
states and an unconditional squeezer. For the former, via a
small variation of the setup, we can choose the nonclassical

states to be either a single photon [26] or a CSS [27]. The
states will always emerge randomly in time; however, from
a photon “click” at the avalanche photodiode (APD), we
know whenever a state arrives. These “heralded” non-
classical states are localized in time around the detections
of correlated photons [26,27]. Therefore, our unconditional
squeezer must have enough bandwidth to be applicable
in the corresponding short time slots [4]. We extended our
previous measurement-based squeezer [12] to meet this
requirement. This squeezer avoids direct coupling of fragile
input states to nonlinear optical media, which typically
involves large optical losses. Instead, an ancillary squeezed
state is utilized as a resource of nonlinearity [28] (see the
Supplemental Material [15]). In this scheme, the higher
the squeezing level of the ancilla state becomes, the more
closely the squeezing operation resembles a unitary, com-
pletely reversible squeezing gate. Although our squeezer
is assisted by homodyne detection on the ancilla beam, the
nonclassical signal state is never directly measured (see the
quantum eraser [29]) when the squeezer is applied.
In order to verify the conversions, we perform quantum

homodyne tomography on input and output states [30,31].
Recall that wave and particle properties in quantum optics
are formally connected via a pair of annihilation and
creation operators for photons, â and â†, respectively.
These non-Hermitian operators are the quantized versions
of the complex and complex conjugate amplitudes of an
optical field mode, satisfying the bosonic commutation
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FIG. 1 (color online). Experimental setup. BS(T), beam splitter
with transmittance T determining the degree of squeezing; OPO,
optical parametric oscillator; SC, separating cavity; FC, filter
cavity; APD, avalanche photo diode; HD, homodyne detector;
LO, optical local oscillator; EOM, electro-optic modulator; CC,
classical channel; R, reflectivity. An optical delay line of about
12 m, traveling in free space, is used to match the propagation
times of the two signals, one of which gets converted to an
electrical signal and back, while the other one remains optical
throughout.
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relation ½â; â†� ¼ 1. Similarly, the quadrature operators,
x̂ ¼ ðâþ â†Þ= ffiffiffi

2
p

and p̂ ¼ ðâ − â†Þ=i ffiffiffi

2
p

, correspond to
the quantized real and imaginary parts of the optical
complex amplitudes (up to a factor of

ffiffiffi

2
p

), where
½x̂; p̂� ¼ i. Through homodyne detection, the quadrature
x̂ðθÞ can be measured, which gives a Hermitian part of the
operator âe−iθ; θ ¼ 0 and θ ¼ π=2 then correspond to x̂
and p̂, respectively.
The experimental results for converting single-photon

states into several CSSs are shown in Fig. 2, and those for
the reciprocal conversion are given in Fig. 3. The top panels
show the phase dependence of quadrature distributions
obtained by a series of homodyne measurements. From
these, Wigner functions and photon-number density matri-
ces are calculated, as shown in the lower panels. In Fig. 2,
the leftmost column shows the input single-photon state,
while the three right columns show the output CSSs for
three different squeezing levels. Similarly, in Fig. 3, the left
column shows the input CSS, and the right column shows
the output single-photon state.
We shall first discuss the quadrature distributions (top

panels). The Fock state j1i of a single photon, which is a
typical carrier of discrete-variable quantum information,
is a highly nonclassical energy eigenstate of a quantized
oscillator with a totally undetermined phase. The phase
insensitivity of the quadrature distribution is a characteristic

of a single-photon state, as can be seen in the leftmost panel
of Fig. 2(a) and in the right panel of Fig. 3(a). On the other
hand, any coherent state is an eigenstate of the annihilation
operator, âjαi ¼ αjαi. This corresponds to a sinusoidal
wave with mean complex amplitude α and minimal quantum
noise [3]. By superimposing two coherent states, jαi− j−αi,
the quadrature distribution corresponds to two sinusoidal
waveforms with quantum interference at each intersection,
like in the three right panels of Fig. 2(a) and the left panel
of Fig. 3(a). This quantum interference is a witness for a
genuine quantum superposition of jαi and j − αi and it
would never occur for a stochastic mixture of coherent states.
The conversion is achieved by means of a squeezing

operation, ŜðγÞ ¼ eγðâ†2−â2Þ=2, where γ ∈ R quantifies the
amount of squeezing. In Fig. 2(a), the phase-dependent
oscillations increase with larger squeezing. Three different
squeezing levels, γ ¼ 0.26, 0.37, and 0.67, are demon-
strated, resulting in three different amplitudes of CSSs,
α ¼ 0.91, 1.10, and 1.64, respectively. The gap at the
intersection of the waves becomes less pronounced for
larger γ because of the finite squeezing of the ancilla mode
(about 7 dB relative to shot noise). In an opposite manner,
in Fig. 3(a), a phase-dependent oscillation is canceled by
squeezing, resulting in a phase-independent distribution
with a gap, like for a single-photon state. The input CSS
with α ¼ 0.97 is converted by squeezing with γ ¼ −0.26.
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FIG. 2 (color online). Experimental quantum states for the conversion from particle to wave. The leftmost column shows the input
single-photon state, while the other three columns show the output states for a squeezing parameter γ of 0.26, 0.37, and 0.67, from left to
right. (a) Quadrature distributions over a period. (b) Wigner functions. (c) Photon number distributions and photon number
representation of density matrices. The minimum value of −0.22 for the input Wigner function becomes, respectively, −0.15, −0.12, and
−0.06, after the conversion.
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In the corresponding Wigner functions (middle panels),
where detector inefficiencies and losses are not corrected,
the nonclassicality of the input and output states becomes
manifest in negative values. These Wigner functions are
converted from rotationally symmetric to asymmetric
[Fig. 2(b)] and from asymmetric to symmetric [Fig. 3(b)],
while preserving their large negative values at the phase-
space origin. In Fig. 2(b), the minimum value of −0.22 at the
input becomes, respectively, −0.15, −0.12, and −0.06, at
the output. In Fig. 3(b), −0.16 at the input becomes −0.10 at
the output.
The density matrices (bottom panels) represent the

particle picture. In the particle picture, the effect of the
squeezing is an infinite superposition of photons added
and subtracted in multiples of two. As a result, squeezing
leads to a superposition of even photon number states when
applied to the vacuum and to a superposition of odd photon
number states when applied to the single-photon state.
Being in such an odd-number superposition is also a
distinct feature of the target CSS,

jαi − j − αi ∝ j1i þ α2
ffiffiffi

6
p j3i þ � � � ; ð1Þ

and this is exactly the reason why squeezing achieves the
desired conversion [32].
The diagonal elements of the density matrices represent

photon number distributions, while the off-diagonal ele-
ments correspond to superpositions of j1i and j3i. The input
single-photon state in Fig. 2(c) has a dominant single-photon
component of 84% (without any corrections), while the
input CSS in Fig. 3(c) has dominating one- and three-photon
components compared to the zero-, two-, and four-photon
terms. This also holds for the off-diagonal interference terms
such as j1ih3j. Two-photon creations and annihilations are
revealed by an increase [Fig. 2(c)] and a decrease [Fig. 3(c)]
of the three-photon components, respectively.
In order to quantitatively assess the experimental con-

version processes, besides reconstructing the Wigner func-
tions and density matrices of the input and output states, we
used two additional figures of merit. These are specifically
designed to reveal either the most distinct features of the
particle-to-wave transition or that of the converse, wave-to-
particle transition [33] (for details, see the Supplemental
Material [15]).
From an experimental point of view, it has been

considered notoriously hard to apply a quantum optical
squeezing operation upon more exotic, non-Gaussian
quantum states such as discrete-variable single-photon
states. In our experiment we have succeeded in this difficult
task. By demonstrating the efficient and deterministic
squeezing and unsqueezing of a single photon, we have
opened an entirely new optical toolbox for future quantum-
information applications. In principle, such a unitary,
phase-sensitive amplifier (and attenuator) will allow for
making use of the entire Fock space when processing single
photons, which may help to construct quantum gates
and error correction codes for logical qubits. Using our
universal and reversible low-loss broadband squeezer, we
have for the first time access to a complete set of
deterministic Gaussian operations applicable to nonclass-
ical, non-Gaussian states. These expand the toolbox for
hybrid quantum-information processing [6], and therefore
our result will directly lead to applications in this area. At
the same time, besides providing a completely new class of
optical quantum processors, our experiment bridges two
quantum mechanically distinct regimes: that of particlelike
quantum states such as single photons with that of more
wavelike states such as coherent-state superpositions.
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FIG. 3 (color online). Experimental quantum states for the
conversion from wave to particle. The left column shows the
input coherent-state superposition, while the right column shows
the output state for a squeezing parameter γ of −0.26. (a) Quad-
rature distributions over a period. (b)Wigner functions. (c) Photon
number distributions and photon number representation of
density matrices. The minimum value of −0.16 for the input
Wigner function becomes −0.10 after the conversion.
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