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The dynamics of interacting bosons in one dimension following the sudden switching on of a weak
disordered potential is investigated. On time scales before quasiparticles scatter (prethermalized regime),
the dephasing from random elastic forward scattering causes all correlations to decay exponentially fast,
but the system remains far from thermal equilibrium. For longer times, the combined effect of disorder and
interactions gives rise to inelastic scattering and to thermalization. A novel quantum kinetic equation
accounting for both disorder and interactions is employed to study the dynamics. Thermalization turns out
to be most effective close to the superfluid-Bose-glass critical point where nonlinearities become more and
more important. The numerically obtained thermalization times are found to agree well with analytic
estimates.
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One of the most challenging questions in strongly
correlated systems is understanding the combined effect
of disorder and interactions. This old problem has recently
received some fresh input both in the form of experiments
where ultracold gases with tunable interactions and tunable
disordered potentials have been realized [1–3], and in the
form of theory where phenomena such as many-body
localization have been proposed [4–6]. These studies
indicate that the combined effect of disorder and inter-
actions is most dramatic in the nonequilibrium regime.
While even for clean interacting systems, quantum dynam-
ics is poorly understood, disorder adds yet another layer of
complexity to the problem.
In this Letter we study quench dynamics of a one-

dimensional (1D) interacting Bose gas in a disordered
potential. The quench involves a sudden switching on of
the disordered potential. Past studies of such quenches have
primarily focused on the limit of strong disorder and weak
interactions where many-body localization may lead to a
breakdown of equilibration [7–9]. We focus on the com-
plementary regime of strong interactions and weak dis-
order. More precisely, we investigate a regime where
disorder is nominally irrelevant by studying the superfluid
side of the superfluid-Bose-glass quantum critical point.
A quantum quench drives a system out of equilibrium,

and the key question is how the system relaxes. We show
that the nonequilibrium bosons generated by the quench
can relax by means of two different kinds of scattering
processes in the presence of disorder. One is a random
elastic forward scattering which leads to dephasing. The
second is inelastic scattering arising due to the interplay of
disorder and interactions which eventually thermalizes the
system. We use a novel quantum kinetic equation that
accounts for both disorder and interactions to numerically

investigate how the system thermalizes. We also present
analytic estimates for the thermalization time. However, we
do not investigate the role of hydrodynamic long time tails
which ultimately dominate equilibration at the longest time
scales [10].
Upon approaching a classical or quantum critical point,

two competing phenomena can occur: “critical slowing
down” arises when the relaxation becomes slower and
slower due to the dynamics of larger and larger domains.
But also the opposite, “critical speeding up,” can occur:
because of the abundance of critical fluctuations and the
importance of nonlinearities, thermalization can become
more efficient close to criticality. Both effects can even
occur simultaneously. For magnetic quantum-critical points
in 3D metals, for example, electron relaxation becomes
more efficient close to the transition, while the order
parameter relaxes more slowly [11]. A dramatic critical
speeding up has, for example, recently been observed close
to the liquid-gas transition of monopoles in spin ice [12]. In
addition, experimental, numerical, and analytic results on
the short-time [13–15] and long-time dynamics [16] of the
superfluid-Mott transition suggest that the dynamics
becomes faster upon approaching the transition. In this
case, however, the proximity to integrable points makes the
theoretical analysis of equilibration more challenging, a
complication absent in our study. We find that the enhanced
role of backscattering close to the critical point does give
rise to a striking enhancement of equilibration upon
approaching the critical point.
The equilibrium phase diagram of 1D interacting bosons

in the limit of weak disorder was studied in Refs. [17,18],
where a Berezenskii-Kosterlitz-Thouless transition from
the superfluid phase to a Bose-glass phase was identified
(for strong disorder see, e.g., Refs. [19–21], and for
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quasiperiodic lattices see Refs. [22,23]). We study quench
dynamics in the regime of weak disorder when bosons are
delocalized in the ground state. However, we show that, out
of equilibrium, even very weak disorder can be quite
potent, causing elastic dephasing and inelastic scattering.
These effects will be identified by studying the time
evolution of some key correlation functions and the boson
distribution function.
Our quench protocol is as follows. First, the bosons are

prepared in the ground state of a Hamiltonian Hi charac-
terized by an interaction parameter K and sound velocity
u, Hi ¼ ðu=2πÞ R dx½KðπΠðxÞÞ2 þ ð1=KÞð∂xϕðxÞÞ2� ¼P

p≠0ujpja†pap. Π ¼ ∂xθ=π is canonically conjugate to
the field ϕ, −∂xϕ=π is the smooth part of the boson density,
and the theory is diagonal in terms of a†p; ap, the creation
and annihilation operators for the sound modes [24,25]. At
t ¼ 0, a disordered potential is suddenly switched on so
that the time evolution from t > 0 is governed by the final
Hamiltonian Hf ¼ Hi þ Vdis, where

Vdis ¼
Z

dx

�
−
1

π
ηðxÞ∂xϕþ ðξ�e2iϕ þ ξe−2iϕÞ

�
: ð1Þ

η and ξ are the strength of the forward- and backward-
scattering disorder, respectively [24]. These are assumed
to be time independent and Gaussian distributed so
that disorder averaging (represented by …) gives
ηðxÞηðx0Þ ¼Dfδðx−x0Þ, ξðxÞξ�ðx0Þ ¼ Dbδðx − x0Þ. We
find it convenient to define Db ¼ 2πDbu=Λ3 and Df ¼
Dfðα=u2Þ as the dimensionless strength of the forward- and
backward-scattering disorder, respectively, where Λ ¼ u=α
is a UV cutoff. Note that K → ∞ is the limit of non-
interacting bosons, while K ¼ 1 corresponds to hard-core
bosons (free fermions), with the superfluid-Bose-glass
critical point located near K¼3=2 [24].
We will study the time evolution after the quench of the

boson density-density correlation function Rϕϕ and the
single-particle correlation function Rθθ, the latter being a
measure of the superfluidity in the system. These quantities
in the language of bosonization are

Rϕϕðr; tÞ ¼ hψ ijeiHfte2iϕðrÞe−2iϕð0Þe−iHftjψ ii; ð2Þ

Rθθðr; tÞ ¼ hψ ijeiHfteiθðrÞe−iθð0Þe−iHftjψ ii; ð3Þ

where jψ ii is the state before the quench (the ground state
of Hi). Note that Rϕϕ is the correlator for the component of
the density that oscillates at 2πρ0 (where ρ0 is the average
boson density). We choose to study this because in the
vicinity of the superfluid-Bose-glass critical point, charge
density wave fluctuations dominate.
We employ a Keldysh path-integral formalism wherein

the expectation value of the observable Raa (where
a ¼ θ=ϕ) is given by

hψ ijRaaðtÞjψ ii ¼ Tr½e−iHftjψ iihψ ijeiHftRaa�

¼
Z

D½ϕcl;ϕq�eiðS0þSdisÞ

× Raa½ϕcl=qðtÞ; θcl=qðtÞ�; ð4Þ
where ϕcl;q; θcl;q are linear combinations of the fields
ϕ�; θ� in the two-time Keldysh formalism [26]. Above,
S0 captures the correlators of the clean interacting Bose gas
after the quench, exactly known within our Luttinger liquid
approximation [27]. Sdis contains the forward- and back-
ward-scattering disorder. While the forward-scattering
disorder may be treated exactly, we will treat the back-
ward-scattering disorder perturbatively. Within the Keldysh
formalism, disorder averaging may be carried out without
the complication of introducing replicas

hψ ijRaaðtÞjψ ii ¼
Z

D½η; ξ; ξ��e−ðη2ðxÞ=2DfÞe−ðξðxÞξ�ðxÞ=DbÞ

× hψ ijRaaðtÞjψ ii: ð5Þ

Writing Raa ¼ Rð0Þ
aa þ Rð1Þ

aa þ…, where RðiÞ is OðDi
bÞ,

to leading order, only the forward-scattering disorder
affects the correlators, but already at this order elastic
dephasing effects will be apparent. To see this, note
that when Db ¼ 0, Hf may be diagonalized,
HfðDb¼0Þ¼P

pujpjΓ†
pΓp, where Γp¼apþð~ηp=ujpjÞ,

and ~ηp ¼ ð ffiffiffiffi
K

p
=LÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ljpj=2πp
e−αjpj=2

R
dxηðxÞe−ipx, L

being the system size. The quench creates a highly non-
equilibrium distribution of the Γp quasiparticles so that,
before disorder averaging, the leading order correlators
at a time t after the disorder quench are [28]

Rð0Þ
ϕϕðr; tÞ ¼ hψ ije2iϕðr;tÞe−i2ϕð0;tÞjψ iiDf¼0

× e
−ðiK=uÞ

P
ϵ¼�

hR
rþϵut

r
dyηðyÞ−

R
ϵut

0
dyηðyÞ

i
; ð6Þ

Rð0Þ
θθ ðr; tÞ ¼ hψ ijeiθðr;tÞe−iθð0;tÞjψ iiDf¼0

× e
−ði=2uÞ

hR
rþut

r−ut
dyηðyÞ−

R
ut

−ut
dyηðyÞ

i
. ð7Þ

The correlators are what they would have been in the
absence of the forward-scattering disorder (Df ¼ 0) but
multiplied by random phases. These phases arise because
the quench creates excited left- and right-moving quasi-
particles which, as they travel along the chain, pick up
random phases due to the forward-scattering disorder.
Thus, the operator at position r will be affected by phases
picked up in the region [r − ut, r] by the right movers and
phases picked up in the region [rþ ut, r] by the left
movers.
Because of these random phases, disorder averaging

leads to dephasing that causes the correlators to decay
exponentially in time or position,
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R̄ð0Þ
ϕϕðr; tÞ ¼

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2Λ2
p

�
2K

exp

�
−
K2Df

u
½2tΘðjrj=u − 2tÞ þ ð4t − jrj=uÞΘð2t − jrj=uÞΘðjrj=u − tÞ

þ 3jrjΘðt − jrj=uÞ�
�

R̄ð0Þ
θθ ðr; tÞ ¼

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2Λ2
p

�
1=ð2KÞ

exp

�
−
Df

4u
½2t − ð2t − jrj=uÞΘð2t − jrj=uÞ�

�
: ð8Þ

Here, Θ is the Heaviside function. Thus, the disorder-
averaged correlators are found to decay exponentially with
time for short times ut < r=2, with a crossover to a steady-
state behavior with an exponential decay in position at long
times (ut > r=2 for Rθθ and ut > r forRϕϕ). It is interesting
to contrast this behavior with the situation in equilibrium.
There, the forward-scattering disorder also imposes an
exponential decay in the position of the density correlator
Req
ϕϕ ∼ ð1=r2KÞe−ð2K2Df jrj=u2Þ, but it does not affect the

single-particle propagator at all Req
θθ ∼ 1=r1=ð2KÞ, implying

that it cannot suppress superfluidity. Only backward-
scattering disorder suppresses superfluidity in equilibrium,
eventually causing a transition to the Bose-glass phase [17].
In contrast, our leading order result shows that when the
system is quenched, even forward scattering strongly
affects superfluidity due to random dephasing caused by
the emitted nonequilibrium quasiparticles.
Thus, even though the disorder is weak, and even though

we are in the short-time or intermediate-time regime where
the full effect of the disorder has not yet set in, disorder is
very effective in destroying the superfluidity due to random
dephasing. Moreover, in stark contrast to equilibrium, it is
the forward-scattering disorder which is the most potent in
this prethermalized regime, as random dephasing caused by
it also makes the backward-scattering disorder more
“irrelevant” than in equilibrium. Thus, while superfluidity
is destroyed, the phase that replaces it is not a backward-
scattering disorder induced localized phase either. In fact,
as we discuss in detail below, the role of backward-
scattering disorder is to facilitate inelastic scattering,
causing the system to thermalize into a delocalized high
temperature phase.
We now discuss the long-time regime where inelastic

effects are important. Even in clean interacting systems,
inelastic effects set in after a quench; however, for the
Luttinger model, where only forward-scattering inter-
actions are retained, the clean system is incapable of
thermalizing. In contrast, once disorder is present, the
combined effect of disorder and interactions can cause
inelastic scattering, leading to thermalization. We now
explore this phenomenon. Of course, for free fermions
with disorder (K ¼ 1), there is again no inelastic scattering;
however, our treatment is valid for strong attractive (albeit
forward scattering) interactions and weak disorder.
The quantum quench generates nonequilibrium quasi-

particles with density npðtÞ ¼ hψ iðtÞjΓ†
pΓpjψ iðtÞi. At short

times γ0t < 1 (below we give an estimate for γ0), these may
be considered to be almost free; this is the so-called
prethermalized regime [29–33] discussed above. In con-
trast, at longer times, these quasiparticles eventually scatter
among each other, with the distribution function evolving
according to the quantum kinetic equation [28]

ujpj
Λ2

∂
∂t npðtÞ ¼ −

iπK
2

�
npðtÞ½ΣR − ΣA�ðp; tÞ

−
1

2
½ΣKðp; tÞ − ðΣR − ΣAÞðp; tÞ�

�
: ð9Þ

ΣR;A;K are the self-energies to OðDbÞ, and they depend on
the nonequilibrium population npðtÞ. A kinetic equation
similar to the one above was derived for a commensurate
periodic potential [16]. For the disordered problem, the
derivation follows analogously. Because the interaction
vertex is of the form e2iϕ, a key feature of the kinetic
equation is that it allows for multiparticle scattering
between bosons. Besides this, it has all the usual properties
of a kinetic equation in that it conserves energy, and the
right-hand side vanishes when np is the Bose distribution
function. We solve the kinetic equation numerically, where
the initial condition entering the kinetic equation is the
nonequilibrium quasiparticle density np generated by the
quench. Note that the kinetic equation has been obtained
after a leading order gradient expansion and, in doing so,
has lost some of the initial memory effects and is therefore
not valid at very short times after the quench. We smoothly
connect between the short-time dynamics and the long-time
dynamics of the kinetic equation by perturbatively evolving
npðtÞ forward in time at short times, and we use this
distribution as the initial condition for the kinetic equation.
For ujpj ≪ Λ, such a perturbative short-time evolution
gives [28]

npðt≃ 0Þ ¼ hψ ijΓ†
pΓpjψ ii ¼

Tf
eff þ Tb

eff

ujpj ¼ Teff;0

ujpj ; ð10Þ

where Teff;0 ¼ Tf
eff þ Tb

eff with Tf
eff ¼ KDfΛ=2π, Tb

eff ¼
Λ8πKDb½Γð2K − 2Þ=Γð2KÞ�. Thus, the density is a sum of
two terms, one proportional to the strength of the forward-
scattering disorder and the second proportional to the
strength of the backward-scattering disorder. The symbol
npðt≃ 0Þ is used to imply that this distribution is obtained
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after an initial time evolution. At long wavelengths, the
distribution npðt≃ 0Þ has the appearance of an effective
temperature, however, unlike a true temperature where for
ujpj ≥ Teff;0 the distribution function is exponentially
suppressed; for our case, the distribution function maintains
a slow power-law decay with momentum up to energy
scales of the order of the cutoff Λ. We will use Teff;0 as a
measure of the quench amplitude, and all energy scales will
be measured in units of Λ.
We now present results for the numerical solution of the

kinetic equation for a point far away from (K ¼ 3) and at
(K ¼ 3=2) the superfluid-Bose-glass critical point. In the
main panel of Fig. 1, qnðqÞ is plotted at different times after
the quench, and it is found to reach thermal equilibrium
qneq ¼ q=ðeujqj=Teq − 1Þ, with Teq being determined from
energy conservation. The high-q modes thermalize the
fastest; thus, the thermalization time is set by the behavior
of the long-wavelength modes, an observation which will
allow us to make analytic estimates for the thermalization
time. The numerics also show that the relaxation to
equilibrium is not determined by a single time scale [34]
and therefore not described by a single exponential func-
tion. This is most directly seen by studying how
u½qnðqÞ�q¼0 ¼ Teff approaches Teq starting from its initial
value of Teff;0 (see insets of Figs. 1 and 2). The inset of
Fig. 1 shows that the system thermalizes much faster at the
critical point K ¼ 3=2 in comparison to away from it (see
also [28]). The inset of Fig. 2 clearly shows that at least two
different relaxation rates appear in the dynamics. Below we
discuss these rates analytically.
Since the longest-wavelength mode relaxes the slowest,

let us consider the outscattering rate in the long-wavelength
limit,

γðp; tÞ ¼
�
πK
2

�
iðΣR − ΣAÞ

ujpj ⟶
p→0

¼ 4KDb

Z
∞

−∞
dðΛτÞ sin ½2Ktan−1Λτ�ðΛτÞe−Iðt;τÞ;

ð11Þ

where Iðt;τÞ¼2K
R∞
0 ðdq=qÞe−αq½1þ2nqðtÞ�½1−cosðquτÞ�.

Two time scales may be extracted from Eq. (11). One is γ−10 ,
the time scale for leaving the prethermalized regime, and
the second is γ−1th , the thermalization time when the system
is weakly perturbed from thermal equilibrium. To deter-
mine the former, we substitute npðt≃ 0Þ into Eq. (11) to
obtain γ0 ∼DbTeff;0 ∼DbðDf þ bDbÞ.
As the system evolves, the distribution function

approaches thermal equilibrium. The time scale γ−1th for
the final approach to thermal equilibrium may be estimated
by substituting np ¼ 1=ðeujpj=Teq − 1Þ in Eq. (11). This
yields a thermalization rate of γth ∼DbðTeqÞ2K−2. Since
Teq ∼

ffiffiffiffiffiffiffiffiffiffi
Teff;0

p
for small quench amplitudes [28],

γth ∼Db½Teff;0�K−1: ð12Þ

Our numerical results show that high-energy modes relax
sufficiently fast such that the total time needed for thermal-
ization can be estimated from tth ∼ γ−1th . The relaxation rate
towards thermal equilibrium obtained from the long time
tail of the time evolution is shown in the main panel of
Fig. 2, and it agrees well with γth. Note that the dramatic
reduction of thermalization time on approaching the super-
fluid Bose-glass critical point is due to the backward-
scattering disorder becoming more relevant, facilitating
thermalization. We emphasize that our results are valid as
long as the backscattering disorder is a weak perturbation,
which is the case for K > 3=2 where Db is renormalization
group irrelevant. While our expressions remain well
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FIG. 1. Main panel: Time evolution of qnðqÞ for a
quench where K ¼ 3 and the quench amplitude Teff;0 ¼ 0.024.
The system thermalizes with nðqÞ approaching
neqðqÞ ¼ 1=ðeujqj=Teq − 1Þ, with Teq determined from energy
conservation. Inset: Time evolution of u½qnðqÞ�q¼0 ¼ Teff for
K ¼ 3 and 3=2. Teffðt ¼ 0Þ ¼ Teff;0 and it approaches Teq at long
times. u ¼ 1, q; t are in units of Λ, ½8DbΛ=π�−1, respectively.
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FIG. 2. The thermalization rate γ obtained from the long time
tail agrees well with the analytic estimate which for small quench
amplitudes is γth ∼DbðTeff;0ÞK−1. Inset: The relaxation rates for
K ¼ 3 and 3=2 (the latter has been scaled down). For K ¼ 3, at
short (Teff ≃ Teff;0) and long times (Teff ≃ Teq) the relaxation
rates agree well with γ0, γth respectively indicated by the dashed
lines. For K ¼ 3=2, the relaxation rate at long times agrees well
with γth.
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defined for 1 < K < 3=2, they clearly break down in the
hard-core boson (or free-fermion limit), where the pertur-
bative expression for the density (see Tb

eff ) and the zero
temperature outscattering rate γth ∼Db

R∞
1 dτ1=τ2K−1

acquire infrared divergences [28].
To summarize, we have studied quench dynamics in a

system where both interactions and disorder are present. A
key effect of the disorder is to give rise to random forward-
scattering induced elastic dephasing, important even at
short times, which destroys superfluidity. At longer times,
the interplay of disorder and interactions leads to thermal-
ization which is strongly enhanced close to the superfluid-
Bose-glass transition. Both in the short-time elastic
dephasing regime and the long-time thermal regime,
correlations decay exponentially; however, one may differ-
entiate between these two regimes by an echo [35] experi-
ment: an echo visible in the short-time dephasing regime
will be suppressed exponentially when inelastic scattering
dominates. The two regimes may also be identified by the
length scale determining the decay of the correlations,
which is Df in the elastic dephasing regime and Teq in the
thermal regime. The dephasing dominated regime should
also be observable in short-time numerical simulations on
disordered lattice systems. An interesting direction is to
study quenches on the insulating side of the superfluid-
Bose-glass transition where the growth of disorder under
renormalization competes with dephasing and decoherence
arising from the nonequilibrium population of
quasiparticles.
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