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We study the relations between classical information and the feasibility of accurate manipulation of
quantum system dynamics. We show that if an efficient classical representation of the dynamics exists,
optimal control problems on many-body quantum systems can be solved efficiently with finite precision. In
particular, one-dimensional slightly entangled dynamics can be efficiently controlled. We provide a bound
for the minimal time necessary to perform the optimal process given the bandwidth of the control pulse,
which is the continuous version of the Solovay-Kitaev theorem. Finally, we quantify how noise affects the
presented results.
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Quantum optimal control lies at the heart of the modern
quantum revolution, as it allows us to match the stringent
requirements needed to develop quantum technologies, to
develop novel quantum protocols, and to improve their
performances [1]. Along with the increased numerical and
experimental capabilities developed in recent years, problems
of increasing complexity have been explored and recently a
lot of attention has been devoted to the application of optimal
control (OC) to many-body quantum dynamics: OC has been
applied to information processing in quantum wires [2], the
crossing of quantum phase transitions [3], the generation of
many-body squeezed or entangled states [4], chaotic dynam-
ics [5], unitary transformations [6]. Recent studies have been
devoted to the understanding of the fundamental limits of OC
in terms of energy-time relations (time-optimal) [7] and its
robustness against perturbations [8,9].
These exciting developments call for a general theoretical

framework to understand when and under which conditions
is it possible to solve a given OC problem in a many-body
quantum system. The aim of this work is to introduce an
unified framework to characterize the complexity of OC
problems in many-body quantum systems. At present, very
little is known about the conditions under which is possible
to drive a many-body quantum systems and if these con-
ditions are due to physical, algorithmical or other funda-
mental limitations that Nature might impose. Indeed, due to
the exponential growth of the Hilbert space with the number
of constituents, solving exactly an OC problem on a many-
body system is in general highly inefficient: the algorithmic
complexity (AC) of exact time-optimal problems can be
super-exponential [6]. However, limited precision, errors and
practical limitations naturally introduce a finite precision
both in the functional to be minimized and on the total time
of the transformation. The smoothed complexity (SC) has
been introduced recently to cope with this situation and to
describe the “practical" complexity of solving a problem
in the real world with finite precision (see Supplemental
Material, Sec. 1 [10]). It has been shown that the SC can be

drastically different from the AC: indeed the AC–which is
defined by the scaling of the worst case instance–might be
practically irrelevant as this scaling might never be found in
practice [12]. A paradigmatic case is that of the simplex
algorithm applied to linear programming problems: it is
characterized by an exponential AC in the dimension of the
searched space; however, the SC is only polynomial; that is the
worst case disappears in the presence of perturbations [13].
In this Letter, we perform an information theoretical

analysis that allows us to define and discern between
different limitations of our capability to control many-body
quantum systems: algorithmical, informational, or physi-
cal. We identify the complexity of OC problems, and
present some interesting classes of problems that can be
efficiently solved. We quantify the effects of noise in the
control field on these results relating the channel capacity to
the minimal possible error that can be achieved. We finally
provide an information-time bound, relating the bandwidth
of the control field with the minimal time necessary to
achieve the optimal transformation.
A quantum OC problem can be stated from a dynamical

equation,

_ρ ¼ Lðρ; γðtÞÞ; ð1Þ

with boundary condition ρðt ¼ 0Þ ¼ ρ0, where ρ is the
density matrix describing a quantum system defined on a
Hilbert space H, and L the Liouvillian operator with the
unitary part generated by a Hamiltonian,

H ¼ HD þ γðtÞHC; ð2Þ

where γðtÞ is a time-dependent control field, and HD and
HC the drift and control Hamiltonian, respectively. For
simplicity here we consider the case where only a single
control field is present (the generalization is straightfor-
ward) and we work in adimensional units (ℏ ¼ 1). As any
quantum system with limited energy and limited in space is
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effectively finite-dimensional, from now on we focus on
finite-dimension Hilbert space of dimension, i.e.,H ¼ CN ,
and on the set of density matrices (of dimension Dρ)
defined over H. Equation (1) generates a set of states
depending on the control field γðtÞ and on the initial state
ρ0: the manifold that is generated for every γðtÞ defines the
setW of reachable states from ρ0 with dimension dimW ≡
DWðNÞ [14]. A system is said to be controllable if the
manifold W is the complete space of density matrix
operators; that is, DW ¼ Dρ [15]. However, in general
the set of reachable states is smaller than the whole set of
density matrices; that is, DW ≤ Dρ.
Given a goal state ρ̄ the problem to be solved is to find a

control pulse γ̄ðtÞ that drives the system from a reference
state ρ0 within an ϵ-ball around the goal state ρ̄.
Equivalently, the OC problem can be expressed as a
functional minimization of the form

min
γðtÞ

F ðρ0; ρ̄; γðtÞ; ½λı�Þ; ð3Þ

where the functional F might also include constraints
introduced via Lagrange multipliers λı. The problem is
solved by a (not necessarily unique) optimal γ̄ðtÞ, that
identifies a final state ρf such that ∥ρf − ρ̄∥ < ϵ in some
norm ∥ · ∥.
We now recall the definition of the information content

of the control pulse γðtÞ as we show in the following that it
is intimately related to the complexity of the OC problem.
The information (number of bits bγ) carried by the control
pulse γðtÞ is given by the classical channel capacity C times
the pulse duration T. In the simple case of a noiseless
channel, the channel capacity is given by Hartley’s law; thus,

bγ ¼ TΔΩκs; ð4Þ

where ΔΩ is the bandwidth, and κs ¼ logð1þ Δγ=δγÞ is the
bit depth of the control pulse γðtÞ, and Δγ ¼ γmax − γmin and
δγ are the maximal and minimal allowed variation of the field
[16]. Note that given an uniform sampling rate of the signal
δt, TΔΩ ¼ T=δt ¼ ns where ns is the number of sampling
points. Any optimization method of choice depends on ns
variables—the values of the control field in those points; i.e.,
ns defines the dimension of the input of the optimization
problem. We thus define the dimension of the quantum OC
problem D as follows: Given a dynamical law of the form of
Eq. (1), a reference initial state ρ0 and anypossible goal state in
the set reachable statesW, the dimension of the quantum OC
problem is defined by the minimal number of independent
degrees of freedomD in the OC field necessary to achieve the
desired transformation up to precision ε. Notice thatD might
be the minimal number of sampling points ns (i.e., D ¼
TΔΩ), of independent bang-bang controls, of frequencies
present in the control field, or the dimension of the subspace of
functions the control field has nonzero projection on.
From now on we consider the physical situations where

the control is performed in some finite time t ∈ ½0; T�, with

bounded control field and bounded Hamiltonians, e.g.,
∥HD∥ ¼ ∥HC∥ ¼ 1and γðtÞ ∈ ½γmin∶γmax�∀ t. The afore-
mentioned physical constraints naturally introduce a new
class of states: The set of time-polynomial reachable states
Wþ⊆W is the set of states (such that dimðWþÞ ¼ DWþ)
that can be reached with finite energy with precision ε
in polynomial time as a function of the Hilbert space
dimension N, DWþðNÞ ≤ DW ≤ Dρ. This is the class of
interesting states from the point of view of OC, as if a state
can be reached only in exponential time the optimal control
problem cannot be solved efficiently (see [17] for a counting
argument of the dimension of the manifold Wþ for local
Hamiltonians). Similarly to standard definitions, we define a
time-polynomial reachable system if all states can be reached
(with precision ε) in polynomial time by means of at least one
path (i.e.,DWþ ¼ DW) and a time-polynomially controllable
system ifWþ is equal to the whole set of density matrices (in
this caseDWþ ¼ DW ¼ DρÞ. Notice that if the bound on the
strength of the control γmax is relaxed we have always that
DWþ ¼ DW , however DW ≤ Dρ. Given the above defini-
tions, we can state the following:
Theorem: The dimension D of a quantum OC problem

in Wþ up to precision ε is a polynomial function of the
dimension of the manifold of the time-polynomial reach-
able states DWþ .
Proof: We first prove that the dimension of the problem

is bounded from below by DWþ and then that is bounded
from above by a polynomial function of DWþ .
Lower bound: We divide the complete set of time-

polynomial reachable states Wþ in balls of size εDWþ .
The number of ε-balls necessary to cover the whole set
Wþ is ε−DWþ and one of them identifies the set of states that
live around the state ρ̄ within a radius ε. The information
content of the OC field must be at least sufficient to specify
the ε-ball surrounding the goal state, that is bγ ≥ b−S , where
b−S ¼ log ε−DWþ . Finally one obtains

ε ≥ 2
−TΔΩκS

D
Wþ : ð5Þ

Setting a maximal precision (e.g., machine precision)
expressed in bits κε ¼ −log2ε results in TΔΩκs=DWþ ¼
Dκs=DWþ ¼ κε, and imposing κε ¼ κs we obtain

D ≥ DWþ : ð6Þ

Upper bound: The goal state belongs to the set of time-
polynomial states ρ̄ ∈ Wþ; thus, the path of finite length L
that connects the initial and goal states in polynomial time
exists. The maximum of (nonredundant) information that
provides the solution to the problem is the information needed
to describe the complete path bþS . Setting the desired precision
ε, this is equal to log ε−DWþ bit of information for each ε-ball
needed to cover the path times the number of balls nε. The
latter is given by

nε ¼ L=ε ≤ Tvmax=ε ¼ PolyðDWþÞvmax=ε; ð7Þ
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where L is the length of the path and vmax is the maximal
allowed velocity along the path due to the bounded energy.
In conclusion, we obtain that

bþS ¼ PolyðDWþÞvmax
ε

log ε−DWþ ; ð8Þ

which implies, together with the condition bγ ≤ bþS ,

Poly0ðDWþÞvmax=ε ≥ D: ð9Þ
As D is bounded by a polynomial function of DWþ , thus
D ¼ PolyðDWþÞ ▪
Notice that the lower bound holds in general for any

reachable state inW and can be saturated, as recently shown
in [18,19]. On the other hand, the upper bound diverges for
ε → 0, as finding the exact solution of the control problem
might be as difficult as super exponential [6]. The theorem
has a number of interesting practical and theoretical impli-
cations that we present in the rest of the paper.
Complexity.—The aforementioned theorem poses the

basis to set the SC of solving the OC problem. An algorithm
recently introduced to solve complex quantum OC problems,
the chopped random basis (CRAB) optimization, builds
on the fact that the space of the control pulse γ̄ðtÞ is limited
from the very beginning to some (small) value D, and then
solves the problem by means of a direct search method as the
simplex algorithm (see Supplemental Material, Sec. 3 [20]).
Recently, numerical evidence has been presented that this
algorithm efficiently founds exponentially precise solutions
as soon asD ≥ DW [28]. This result can be put now on solid
ground as under fairly general conditions OC problems are
equivalent to linear programming [29] and linear program-
ming can be solved via simplex algorithm with polynomial
SC (see Supplemental Material, Sec. 1 [10]) [12]; thus, the
CRAB optimization solves with polynomial SC OC prob-
lems with dimension D. More formally, one can make the
following statement: The class of OC problems that satisfy
the hypothesis (H1–H3) of Ref. [29] is characterized by a
polynomial SC in the dimension of the problem D. In
conclusion, studying the scaling of the dimension of the
control problem D with the system size N is of fundamental
interest to understand and classify our capability of efficiently
control quantum systems. The polynomial relation that we
have proven between D and DWþ allows us to focus from
now on to the latter quantity which can be directly inves-
tigated in different settings. In particular, for many-body
quantum systems, the scaling of DWþ with the number
of constituents n ¼ logd N is fundamental to discriminate
between feasible and unfeasible OC dynamics.
The first results in this direction can be obtained

observing the influence of the integrability of the quantum
system on DWþ , resulting in the following properties:
(i) The dimension D of a generic OC problem defined a

time-polynomial controllable nonintegrable n-body quan-
tum system is exponential with the number of constituents
n. Indeed, in this case the dynamics explores the whole

accessible space and the set of time-polynomial reachable
states is DWþ ∝ N2 (DWþ ¼ N for pure states).
On the contrary, despite the exponential growth of the

Hilbert space, the dimension of Wþ for integrable systems
is at most linear in the number n of constituents of the
system, that implies together with the theorem above that:
(ii) The dimension D of OC problems defined on time-

polynomially controllable integrable many-body quantum
system, is polynomial with n and thus this class of problems
can be solved efficiently. Notice that this statement general-
izes a theorem that has been proven for the particular case of
tridiagonal Hamiltonian systems presented in [30].
Finally, there exists a class of intermediate dynamics that

despite in principle might explore an exponentially big
Hilbert space, are confined in a corner of it and can thus be
efficiently represented. The simplest example of this class
of problems is mean-field dynamics; however, more gen-
erally, to this class of dynamics belong those that can be
represented efficiently by means of a tensor network as
t-DMRG (see Supplemental Material, Sec. II [31]) [32]. We
can thus state the following:
(iii) The dimension D of an OC problem defined on a

dynamical process that can be described efficiently by a
tensor network; e.g., in one dimension a matrix product
state is polynomial in n. The dimension of the set of states
that can be efficiently represented by a tensor network
scales as PolyðnÞT ≥ DW ≥ DWþ , where T is the total time
of the evolution and PolyðnÞ is the dimension of the biggest
tensor network state represented during the time evolution.
Notice that, although the previous statement is in principle
valid in all dimensions, it has practical implications mostly
in one-dimensional systems as much less efficient repre-
sentations of the dynamics are known in dimensions bigger
than one [33]. The previous property can be rephrased as
(iv) Time evolution of slightly entangled one-dimensional

many-body quantum systems can be efficiently represented
via matrix product states with DWþ ≤ DW ¼ OðTdχ2nÞ
parameters, where χ is the maximal Schmidt rank of any
bipartition present in the system [34]. Thus, systems with
χ ∝ logðNÞ for every time can be efficiently controlled.
We stress that the entanglement present in the system

is not uniquely correlated with the complexity of the OC
problem: indeed due to the previous results, integrable
systems (also highly entangled) are efficiently controllable,
as shown recently in [18]. On the contrary, as said before,
highly entangled dynamics of non integrable systems, for
which it does not exists an efficient representation, are
exponentially difficult to control. In conclusion, the dimen-
sion of the control problem D depends on the dimension of
the manifold over which the dynamics takes place, and this
dimension sets the complexity of the OC problem. This can
be simply understood by considering the scenario where
the dynamics over which the control problem is defined
is restricted to the space of two eigenstates of a complex
many-body Hamiltonian (i.e., D ¼ 2), each of them highly
entangled with respect to some local basis. If one has access
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to a direct coupling between them, the complexity of the
OC problem is not more than that of a simple Landau-zener
process (independently from the entanglement present in
the system) as the manifold is effectively two dimensional.
However, this is not generally the case, as one has usually
access to some local (or global) operator, and the dynamic
of the system is not in general restricted to two states. In the
case of nonintegrable systems, a generic couple of initial
and goal states projects on exponentially many basis states
independently of the chosen basis, while for integrable states
it exists a base where the states have a simple representation.
Thus, the minimal amount of information needed to solve
the quantum OC problem is exponential and polynomial,
respectively. In between, there is the class of TN-efficiently
representable dynamics, for which we know how to build an
efficient representation and correspondingly we know how to
efficiently solve the OC problem.
Time bounds.—Manipulating Eq. (5) applied to the

whole set of reachable states W we achieve a bound for
the minimal time needed to achieve the desired trans-
formation as a function of the control bandwidth: The
minimal time needed to reach a given final state inDW with
precision ε at finite bandwidth is

T ≥
DW

ΔΩκS
logð1=εÞ; ð10Þ

or again, under the assumption that κε ¼ κs,

T ≥
DW

ΔΩ
: ð11Þ

The previous relation is a continuous version of the
Solovay-Kitaev theorem: it provides an estimate of the
minimal time needed to perform an optimal process given a
finite band-width (see Supplemental Material, Sec. IV
[35]). Notice also that the bandwidth provides the average
bits rate per second; thus, these results coincide with the
intuitive expectation that the minimal time needed to
perform an optimal quantum process is the time necessary
to “inform” the system about the goal state given that the
control field has only a finite bit transmission rate.
We recall that there is a time-energy bound, known as the

quantum speed limit, that in its general form is

TQSL ≥
dðρ0; ρ̄Þ

Λ̄
; ð12Þ

where dð·; ·Þ is the distance and Λ̄ ¼ R
T
0 ∥L∥pdt=T with

∥ · ∥p the p-norm [7] (see Supplemental Material, Sec. V
[37]). The most efficient process saturates both bounds,
which implies ΔΩ ∝ DW ; thus the bandwidth of the time-
optimal pulse in general should scale as the dimension of
the space W, requiring exponential higher frequencies for
nonintegrable many-body quantum systems and thus prac-
tically preventing its physical realization.

Noise.—In the presence of noise, Eq. (4) has to be
modified. In the following we consider a common scenario;
however, this analysis can be adapted to the specific noise
considered. For Gaussian white noise, according to the
Shannon-Hartley theorem the channel capacity is
ks ¼ logð1þ SÞ, where S is the signal to noise power
ratio [16]. Thus, following the same steps as before, we
obtain that

ε ≥ ð1þ SÞ− D
DW ; ð13Þ

and similarly

T ≥
DW

ΔΩ
logð1=εÞ
logð1þ SÞ : ð14Þ

For small noise-to-signal ratio (1=S ≪ 1), the previous
bound results in ε≳ ð1=SÞD=DW , which together with the
fact that D has to be a polynomial function of DWþ show
that the control problem is in general exponentially
sensitive to the problem dimension. However, if one
saturates the lower bound on the complexity of the optimal
field, i.e., D ¼ DW , the sensitivity to Gaussian white noise
becomes linear in the noise-to-signal ratio. That is, the
effects of the noise on the optimal transformation are
negligible if the noise level is below the error, 1=S ≲ ε.
As requiring the optimal transformation to be more precise
than the error on the control signal is somehow unnatural, this
relation demonstrates that OC transformations are in general
robust with respect to noise, as recently observed [39]. At the
same time, for ε≲ 1=S this result agrees with the scaling for
exact optimal transformations recently found in [9].
Control of unitaries.—The aforementioned statements

also hold for the generation of unitaries as the differential
equation governing the evolution of the time evolution
operator ı _UðtÞ ¼ HðtÞUðtÞ is formally equivalent to Eq. (1)
replacing the density matrix with the time evolution
operator UðtÞ, the reference state with the identity operator,
and the goal state with the unitary to be generated.
Observability.—As any controllable system is also

observable by a coherent controller [40], the previous
definitions and results can be straightforwardly applied
to the complexity of observing a many-body quantum
system with precision ε.
In conclusion, we have shown that if one allows a finite

error (both in the goal state and in time) as it typically
occurs in any practical application of OC, what can be
efficiently simulated can also be optimally controlled, and
the optimal solution is in general robust with respect to
perturbation on the control field. Notice that the presented
results are valid both for open and closed loop OC.
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