
Curvature Effects in Thin Magnetic Shells

Yuri Gaididei,1,* Volodymyr P. Kravchuk,1,† and Denis D. Sheka2,‡
1Bogolyubov Institute for Theoretical Physics, Kiev 03143, Ukraine

2Taras Shevchenko National University of Kiev, Kiev 01601, Ukraine
(Received 10 December 2013; revised manuscript received 23 April 2014; published 25 June 2014)

A magnetic energy functional is derived for an arbitrary curved thin shell on the assumption that the
magnetostatic effects can be reduced to an effective easy-surface anisotropy; it can be used for solving
both static and dynamic problems. General static solutions are obtained in the limit of a strong anisotropy of
both signs (easy-surface and easy-normal cases). It is shown that the effect of the curvature can be treated as
the appearance of an effective magnetic field, which is aligned along the surface normal for the case of
easy-surface anisotropy and is tangential to the surface for the case of easy-normal anisotropy. In general,
the existence of such a field excludes the solutions that are strictly tangential or strictly normal to the
surface. As an example, we consider static equilibrium solutions for a cone surface magnetization.
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Recent advances in microstructuring technology have
made it possible to fabricate various low-dimensional
systems with complicated geometry. Examples are cylin-
drical high-mobility two-dimensional (2D) electron struc-
tures obtained by rolling up mismatched semiconductor
layers [1], flexible electronic devices [2] and integrated
circuits [3], spin-wave interference in rolled-up ferromag-
netic microtubes [4], magnetically capped rolled-up
nanomembranes [5], etc. After the seminal work of da
Costa [6]—where an effective Schrödinger equation for the
tangential motion of a particle rigidly bounded to a surface
was derived and the presence of effective surface potentials
depending on both the Gaussian and mean curvatures
was shown—much work has been done to elucidate the
curvature effects on charge and energy transport and
localization in systems with complicated geometry [7].
The behavior of vector and tensor fields on curved surfaces
has attracted the attention of many researchers (see, e.g.,
Refs. [8,9]). However, despite the amount of work that has
been done it is not fully understood. One of the reasons for
this is a complicated and intimate relationship between two
geometries: the geometry of the field (the director in liquid
crystalline phases, the magnetization vector in ferromag-
nets, the displacement vector in crystalline monolayers,
etc.) and the geometry of the underlying substrate. Until
now researchers in this area were mostly concerned with
the case when the vector field is strictly tangential to the
curved surface, i.e., 2D vector fields. This approach showed
its validity and robustness in understanding crystalline
arrangements of particles interacting on a curved surface
[8,10,11], in studying the geometric interaction between
defects and curvature in thin layers of superfluids, super-
conductors, and liquid crystals deposited on curved surfa-
ces [12], and in the frustrated nematic order in spherical
geometries [13]. However, the tangentiality condition may
be too restrictive for magnetic systems with their different

types and strengths of surface anisotropy (in/out of sur-
face). Moreover, in the frame 2D vector-field approach it is
impossible to study the dynamical properties of magnets on
curved surfaces.
The goal of this Letter is to develop a full three-

dimensional (3D) approach for thin magnetic shells of
arbitrary shape.
The phenomenological study of nanomagnets is based

on the classical Landau-Lifshitz equation _m¼½m×δE=δm�,
where m ¼ M=Ms is the normalized magnetization unit
vector withMs being the saturation magnetization, E is the
rescaled energy, normalized by 4πM2

s, and the overdot
indicates a derivative with respect to the rescaled time in
units of ð4πγMsÞ−1, where γ is the gyromagnetic ratio. No
damping is taken into account. Since the dynamics of the
vectorm is a precessional one, the energy functional E must
be written for the case of a general—not necessarily
tangential—magnetization distribution. Note that in the
case of a static tangential distribution of the director in a
curvilinear nematic shell the general expression for the
surface energy was recently obtained in Refs. [14,15]. The
expressions for E for an arbitrary three-dimensional mag-
netization distribution have already been obtained only for
cylindrical [16,17] and spherical [18] geometries. Here we
propose a general approach that can be used for an arbitrary
curvilinear surface and an arbitrary magnetization vector
field. However, we neglect dipole-dipole interactions and
take into account only exchange and anisotropy contribu-
tions. The last one can have a symmetry of the surface; e.g.,
it can be uniaxial with the axis oriented along the surface
normal.
First of all, we define a set of geometrical parameters of a

curvilinear surface which will affect the physical properties
of the magnetic system. Considering a 2D surface S
embedded in 3D space R3, we use its parametric repre-
sentation of the general form r ¼ rðξ1; ξ2Þ, where r ¼ xix̂i
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is the 3D position vector defined in the Cartesian basis
x̂i ∈ fx̂; ŷ; ẑg, and ξα are local curvilinear coordinates on
the surface. Here and below, latin indices i; j ¼ 1; 2; 3
describe Cartesian coordinates and Cartesian components
of vector fields, whereas greek indices α, β ¼ 1; 2 numerate
curvilinear coordinates and curvilinear components of
vector fields. We also use here the Einstein summation
convention.
Let us introduce the local normalized curvilinear

basis eα ¼ gα=jgαj, n ¼ ½e1 × e2�, where gα ¼ ∂αr with
∂α ¼ ∂=∂ξα. The following analysis is performed under
the assumption that the basis is orthogonal or, equivalently,
that the metric tensor gαβ ¼ gα · gβ is diagonal. For con-
venience we introduce the vector ϖ of the spin connection
ϖα¼ e1 ·∂αe2, the second fundamental form bαβ¼n ·∂βgα,
and the matrix jjhαβjj ¼ jjbαβ= ffiffiffiffiffiffiffiffiffiffiffiffiffigααgββ

p jj which has the
properties of the Hessian matrix: the Gauss curvature
K ¼ detðhαβÞ and the mean curvature H ¼ trðhαβÞ=2.
Physically realizable magnetic nanomembranes are

of a finite thickness L. We model such a nanomembrane
as a thin shell with L ≪ R, with R being the minimal
curvature radius of the surface S. Then the space domain
filled by the shell can be parametrized as rðξ1; ξ2; ηÞ ¼
rðξ1; ξ2Þ þ ηnðξ1; ξ2Þ, where η ∈ ½−L=2; L=2�. The main
assumption is that the thickness L is small enough to ensure
that the magnetization is uniform along the direction of
the normal; i.e., we assume that m ¼ mðξ1; ξ2Þ. This
assumption is appropriate for the cases when the thickness
is much smaller than the characteristic magnetic length.
Similarly to Refs. [14,15], we derive the effective 2D
magnetic energy of the shell as a limiting case L → 0 of the
3D model and only consider contributions to the magnetic
energy that are linear with respect to the thickness L. Thus
we consider the surface magnetic energy in the form

E ¼ L
Z

S
½l2Eex þ λðm · nÞ2�dS; ð1Þ

where the integration is over the surface S with the surface
element dS ¼ ffiffiffi

g
p

dξ1dξ2, where g ¼ detðgαβÞ. The second
term in the integrand is the density of the anisotropy
energy; it is of easy-surface or easy-normal type for the
cases λ > 0 and λ < 0, respectively, where λ is the
normalized anisotropy coefficient. For examples of curved
magnets with both kinds of anisotropies see Refs. [19–21].
The only curvature effect on the anisotropy term is a spatial
dependence of the anisotropy axis oriented along the
normal vector n. The exchange energy density is repre-
sented by the first term, where l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=ð4πM2
sÞ

p

is the
exchange length and A is the exchange constant. The length
scale in the system (1) is determined by the parameter
σ ¼ l=

ffiffiffiffiffijλjp

, which is a domain-wall width.
It has been well established in numerous studies on

rigorous micromagnetism (see, e.g., Refs. [22–24]) that the
effects of nonlocal dipole-dipole interactions can be

reduced to an effective easy-surface anisotropy for thin
shells when the thickness is much less than the exchange
length and size of the system. Being aware that these results
were obtained for plane films, we assume that the same
arguments are valid for smoothly curved shells [25].
In the Cartesian frame of reference the exchange

energy density Eex ¼ ð∇miÞð∇miÞ. The Cartesian com-
ponents of the magnetization vector mi are expressed in
terms of the curvilinear components mα and mn as follows:
mi ¼ mαðeα · x̂iÞ þmnðn · x̂iÞ. Then we substitute this
expression into Eex and apply the gradient operator in its
curvilinear form, ∇≡ ðgααÞ−1=2eα∂α. To incorporate the
constraint jmj ¼ 1, we also use the angular parametrization

m ¼ sin θ cosϕe1 þ sin θ sinϕe2 þ cos θn; ð2Þ
where θ ¼ θðξ1; ξ2Þ is the colatitude and ϕ ¼ ϕðξ1; ξ2Þ
is the azimuthal angle in the local frame of reference.
Finally, in terms of θ and ϕ the exchange energy density Eex
reads

Eex ¼ ½∇θ − ΓðϕÞ�2 þ
�

sin θð∇ϕ −ΩÞ − cos θ
∂ΓðϕÞ
∂ϕ

�

2

:

ð3Þ
Here the vector Ω ¼ ðϖ1=

ffiffiffiffiffiffi

g11
p

;ϖ2=
ffiffiffiffiffiffi

g22
p Þ is a modified

spin connection and the vector Γ is determined as follows:

ΓðϕÞ ¼ ∥hαβ∥τðϕÞ ¼ HτðϕÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 −K
p

τðυ − ϕÞ; ð4Þ

where τðϕÞ ¼ ðcosϕ; sinϕÞ and tan υ ¼ 2h12=ðh11 − h22Þ.
Note that Γ vanishes in the case of a planar film and the
expression (3) is reduced to the well-known formula Eex ¼
ð∇θÞ2 þ sin2θð∇ϕ −ΩÞ2 [26]. It should be emphasized
that the general expression (3) is reduced to the already
obtained results for the specific cases of cylindrical [16,17]
and spherical [18] geometries.
Using the energy expression (3), one can analyze general

static solutions for the case of a strong anisotropy. Let us
first consider the case of an easy-surface anisotropy (λ > 0)
and let the anisotropy be strong enough to provide a
quasitangential magnetization distribution; in other words,
θ ¼ π=2þ ϑ with ϑ ≪ 1. Then the total energy (1) can be
expressed as

E ≈ L
Z

ðl2Et þ 2l2Ftϑþ λϑ2ÞdS;

Et ¼ Γ2 þ ð∇ϕ −ΩÞ2; Ft ¼ ∇ · Γþ ð∇ϕ −ΩÞ ∂Γ∂ϕ ; ð5Þ

where Et is the energy density of a strictly tangential
distribution (θ≡ π=2, or equivalently mn ≡ 0) and Ft can
be treated as the amplitude of a curvature-induced effective
magnetic field oriented along the normal vector n. Note that
Ft ≡ 0 in the case of planar film.
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The minimization of the energy functional (5) results in

ϑ ¼ −σ2FtðϕÞ þOðσ4Þ; ð6Þ

where the equilibrium function ϕ is obtained as a solution
of the equation δEt=δϕ ¼ 0. According to Eq. (6), the
strictly tangential solution is realized only for a specific
case, FtðϕÞ≡ 0.
An expression analogous to Et was recently obtained in

Refs. [14,15] for the case of curvilinear nematic shells with
a purely tangential distribution of the director. However, as
follows from Eq. (6), the purely tangential solutions are not
possible in the general case.
For the opposite case of a strong easy-normal anisotropy

(λ < 0) one has two possibilities, namely, θ ¼ ϑ or θ ¼
π − ϑ with ϑ ≪ 1. In the first case the total energy (1) can
be written as

E ≈ L
Z

ð2l2ϑFn þ jλjϑ2ÞdS þ const; ð7Þ

where Fn ¼ ð∇ · hÞ · τ þΩðhð∂τ=∂ϕÞÞ can be treated as
the amplitude of a curvature-induced effective magnetic
field oriented along the vector τ, where ð∇ · hÞα ¼
ð1= ffiffiffi

g
p Þ∂βðhβα

ffiffiffiffiffiffiffiffiffiffiffi

g=gββ
p Þ is a tensor generalization of the

divergence. Note that Fn ≡ 0 in the case of a planar film.
The minimization of the energy functional (7) leads to

the solution

ϑ ¼ −σ2FnðϕÞ þOðσ4Þ; tanϕ ¼ ð∇ · hÞ2 − ðhΩÞ1
ð∇ · hÞ1 þ ðhΩÞ2

:

ð8Þ

There are two equilibrium values of the azimuthal angle: ϕ
and ϕþ π. One should choose the solution that pro-
vides ϑ > 0.
Similarly to the previous case, a solution strictly normal

to the surface is realized only for the specific case Fn ≡ 0.
This is the case for spherical and cylindrical surfaces.
As an example of an application of our theory we find the

possible equilibrium states of cone shells with high
anisotropies of different types. We consider here the side
surface of a right circular truncated cone. The radius of the
truncation face is R and the length of the cone’s generatrix
is w. By varying the generatrix inclination angle 0 ≤ ψ ≤
π=2 one can continuously proceed from the planar ring
(ψ ¼ 0) to the cylinder surface (ψ ¼ π=2); see Fig. 1. We
chose the following parametrization of the cone surface:

xþ iy ¼ ðRþ r cosψÞ expðiχÞ; z ¼ r sinψ ; ð9Þ

where the curvilinear coordinates χ ∈ ½0; 2πÞ and r ∈ ½0; w�
play the roles of ξ1 and ξ2, respectively. The definition (9)
generates the following geometrical properties of the sur-
face: the metric tensor ∥gαβ∥ ¼ diagðg; 1Þ, the modified

spin connection Ω ¼ eχ cosψ=
ffiffiffi

g
p

, and the second
fundamental form ∥bαβ∥ ¼ diagð− sinψ

ffiffiffi

g
p

; 0Þ, where
ffiffiffi

g
p ¼ Rþ r cosψ . In accordance with Eq. (4)
Γ ¼ −eχ sinψ cosϕ=

ffiffiffi

g
p

.
In the case of a strong easy-surface anisotropy, the

energy of the pure tangential distribution is

Et ¼ 1

g
½sin2ψcos2ϕþ ð∂χϕ − cosψÞ2� þ ð∂rϕÞ2: ð10Þ

The minimization of the energy results in ϕ ¼ ϕðχÞ, which
satisfies the pendulum equation for ϕ″þ1

2
sin2ψ sin2ϕ¼0.

The obtained magnetization state is analogous to the well-
known onion sate with transverse domain walls [27], so we
use this name for the solution,

ϕonðχÞ ¼ amðx; kÞ; x ¼ 2χ

π
KðkÞ; ð11Þ

where amðx; kÞ is the Jacobi amplitude [28] and the
modulus k is determined by 2kKðkÞ ¼ π sinψ, with
KðkÞ being the complete elliptic integral of the first kind
[28]. It should be noted that in the planar limit ψ → 0 the
onion solution (11) is reduced to ϕon ¼ χ, which corre-
sponds to a uniform magnetization distribution [29] in the
Cartesian frame of reference; see Fig. 1(b). The solution of
Eq. (11) that corresponds to ψ ¼ π=4 is shown in Fig. 1(c).
Finally, the energy (1) of the onion state (11) [where we
take into account Eq. (10)] reads Eon ¼ E0ðψÞWon, where

(a) (b)

(c)

(d)

(e)

FIG. 1 (Color online) (color online). Onion state of a cone
surface. a) Geometry and notations. Panels b) and c) show the
onion solution (11) for ψ ¼ 0 and ψ ¼ π=4, respectively,
including the in-surface magnetization distribution (by stream-
lines) and the normal componentmn, normalized bymc

n ¼ σ2=R2

(by color scheme). d) Variation of mn along the azimuthal
direction eχ for a cone with ψ ¼ π=4. e) Schematic distributions
of the magnetization m and effective curvature field Ft within the
cut plane z0y.
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Won ¼ 1 −
sin2ψ
k2

þ 4

π

sinψ
k

EðkÞ − 2 cosψ ; ð12Þ

with E0ðψÞ ¼ 2πLl2 lnð1þ wR−1 cosψÞ= cosψ , and EðkÞ
is the complete elliptic integral of the second kind [28];
see Fig. 2(a).
Another (“axial”) solution of the pendulum equation

reads ϕax ¼ �π=2 [see Figs. 2(b) and 2(c)], which has an
energy Eax ¼ E0ðψÞWax, with Wax ¼ cos2 ψ . The equality
of the energiesWonðψÞ ¼ WaxðψÞ determines some critical
angle ψc ≈ 0.8741 ≈ 5π=18 which separates the onion
(ψ < ψc) and axial (ψ > ψc) phases; see Fig. 2(a).
The obtained evolution of the equilibrium states with the

curvature changing (increasing of ψ) is a manifestation of
the above-mentioned interplay of two geometries: the
geometry of the vector field (magnetization vector) and
the geometry of the magnetic shell. The energy Et consists
of three competitive interactions: a “standard” exchange
Et
0 ¼ ð∇ϕÞ2 which homogenizes the spatial distribution of

the magnetization vector, and two terms that are due to a
nontrivial geometrical structure of the shell, namely, an
effective anisotropy interaction Et

A ¼ Γ2 and an effective
Dzyaloshinskii-like [30] Et

D ¼ −2ð∇ϕ ·ΩÞ interaction. For
the cone surface the anisotropy term Et

A ¼ g−1sin2ψcos2ϕ
dominates for surfaces close to cylindrical (ψ → π=2) and
it makes the axial solution ϕ ¼ �π=2 energetically more
favorable, while the Dzyaloshinskii interaction Et

D ¼
−2g−1 cosψ∂χϕ dominates for cone surfaces close to
planar, ∣ψ ∣ ≪ ψc, and it favors the spatially inhomo-
geneous distribution given by the solution (11).
It should be noted that the appearance of the curvature-

induced Dzyaloshinskii-like term can explain the observed
polarity [31,32] and chirality [33] symmetry breaking for
magnetic vortices caused by the surface roughness.

The curvature-induced out-of-surface deviations of the
magnetization vector given by Eq. (6) with the effective
field Ft ¼ n sinψ sinϕð2∂χϕ − cosψÞ=g are shown in
Figs. 1(c) and 2(b) for the cases of the onion and axial
solutions, respectively. The corresponding distributions of
the effective field Ft are shown, respectively, in Figs. 1(e)
and 2(c). These results demonstrate that the magnetization
vector deviates from the surface mostly in the vicinity of the
cone vertex. Far away from the vertex the deviation is
small. The reason for such a behavior is a competition
between the exchange and the easy-surface anisotropy. The
effective magnetic field Ft originates from the exchange
energy. In the case of a cone surface it is proportional to the
square of the mean curvature H2 ∼ g−1 and it is maximal
near the cone vertex. As the distance from the vertex
increases the mean curvature H decreases, and the easy-
surface anisotropy interaction prevails and makes the
magnetization distribution essentially tangential. It is worth
noticing that the out-of-surface deviations are absent in
planar shells (ψ → 0) as well as for axial states of
cylindrical shells (ψ → π=2, ϕ ¼ �π=2), since in these
cases Ft ≡ 0.
In magnetic shells with a strong easy-normal anisotropy

the magnetization is oriented along the normal vector
(inward or outward from the cone surface) up to the small
deviations (8) originating from the curvature-induced
effective magnetic field Fn ¼ g−1 sinψ cosψτðϕÞ, where
ϕ ¼ π=2 for the inward and ϕ ¼ −π=2 for the outward
magnetization directions; see Fig. 3. The appearance and
spatial behavior of the out-of-normal magnetization
deviations have the same qualitative explanation as in
the case of an easy-surface anisotropy. Note that the
deviation from the normal distribution vanishes for a
cylindrical surface (ψ ¼ π=2) as well as for the planar
case (ψ ¼ 0).
For both cases the order of magnitude of the deviations ϑ

is determined by the quantity mc
n ¼ σ2=R2. For a thin film

of a magnetically soft material the effective easy-surface
anisotropy has a magnetostatic nature (λ ¼ 1=2). In the
case of Permalloy (l ¼ 5.3 nm) film one can estimate
mc

n ≈ 2.2 × 10−2 and mc
n ≈ 5.6 × 10−3 for cones with a

radius of R ¼ 50 nm and R ¼ 100 nm, respectively.

(a) (b)

(c)

FIG. 2 (Color online) (color online). a) Energies of the onion
(thick line) and axial (thin line) solutions. The magnetization
distributions of the axial-state cone with ψ ¼ π=3 are shown
precisely and schematically in panels b) and c), respectively. The
other notations are the same as in Fig. 1.

(a) (b)

FIG. 3 (color online). Schematic representation of the mag-
netization m and curvature-induced effective field Fn distribu-
tions for the case of a strong easy-normal anisotropy, with
a) inward and b) outward magnetization orientations.
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The developed concept of effective curvature fields can
be used to make computer simulations faster when model-
ing curvature effects in high-anisotropy shells: we propose
to introduce the effective curvature fields Ft and Fn into a
simulation code instead of the excessive mesh refinement in
regions with small curvature radii [34].
In summary, an exchange energy functional for thin

arbitrary curved magnetic shells with easy-surface and
easy-normal magnetic anisotropy have been derived and
general solutions for static magnetization distributions were
discussed. It is shown that the effect of the curvature can be
treated as the appearance of an effective magnetic field. The
means of the developed general theory were demonstrated
for a cone surface.
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