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A rigorous QED evaluation of the two-photon exchange corrections to the g factor of lithiumlike ions is
presented. The screened self-energy corrections are calculated for the intermediate-Z region, and its
accuracy for the high-Z region is essentially improved in comparison with that of previous calculations. As
a result, the theoretical accuracy of the g factor of lithiumlike ions is significantly increased. The theoretical
prediction obtained for the g factor of 28Si11þ gth ¼ 2.000 889 892ð8Þ is in an excellent agreement with the
corresponding experimental value gexp ¼ 2.000 889 889 9ð21Þ [A. Wagner et al., Phys. Rev. Lett. 110,
033003 (2013)].

DOI: 10.1103/PhysRevLett.112.253004 PACS numbers: 31.30.J-, 31.15.ac, 31.30.js

Highly charged ions provide not only a unique scenario
for probing QED effects in the strongest electromagnetic
fields but also give access to an accurate determination of
fundamental physical constants and nuclear parameters. In
recent years, amazing progress has been made in the
experimental and theoretical investigations of the bound-
electron g factor. High-precision measurements of the
ground-state g factor of H-like carbon [1] and oxygen
[2] and the related theoretical calculations provided deter-
mination of the electron mass. Recently, due to the
substantial progress in the experimental accuracy of the
g factor of H-like carbon and silicon, the mass of
the electron is once again substantially refined [3]. So
far, H- and Li-like silicon ions represent the heaviest ions,
where the g factor has been accurately measured [4–6]. To
date, these experiments provide the most stringent tests of
the bound-state QED (BS QED) corrections in the presence
of a magnetic field. Accurate measurements of the g factor
in few-electron ions, such as Li-like calcium and B-like
argon [7], are already anticipated. The investigations of the
few-electron ions, unlike H-like ions, also provide access to
the many-electron QED corrections, which are represented
by a different facet of the QED diagrams.
The theoretical contributions to the g factor of Li-like

ions can be separated into one-electron and many-electron
parts. The one-electron terms are similar to the correspond-
ing corrections to the g factor of H-like ions. The many-
electron contributions, which define the main difference
between the g factors of H- and Li-like ions, were
investigated in Refs. [8–13]. The many-electron contribu-
tions are mainly determined by the screened radiative and
the interelectronic-interaction corrections. For low-Z ions,
the screened radiative corrections were obtained by
employing the perturbation theory to the leading orders
in αZ [9,10]. For intermediate-Z ions, the screening effect
was evaluated by introducing the effective screening

potential in the QED calculations to all orders in αZ [11].
For high-Z ions, the most accurate results for the screened
radiative corrections were obtained rigorously within a
systematic QED approach [12,13]. The one-photon
exchange diagrams, which represent the interelectronic-
interaction correction of the first order in 1=Z, were
evaluated in the framework of QED in Ref. [8]. The
second- and higher-order contributions of the interelec-
tronic interaction were calculated by means of the large-
scale configuration-interaction Dirac-Fock-Sturm method
in Ref. [10]. However, until now, for all values of
Z, the theoretical uncertainty was determined by the
interelectronic-interaction corrections and also, for the
intermediate-Z region, by the screened self-energy correc-
tions. In the present Letter, we report on the complete
evaluation of the two-photon exchange and the screened
self-energy corrections in the framework of a rigorous QED
approach within an extended Furry picture.
In the extended Furry picture, to zeroth order, we solve

the Dirac equation with an effective spherically symmetric
potential, treating the interaction with the external
Coulomb potential of the nucleus and the local screening
potential as exact to all orders. This approach significantly
accelerates the convergence of the perturbation expansion.
We use different types of the screening potential. The
simplest choice is the core-Hartree (CH) potential, which is
created by the charge density distribution of the two core
electrons in the 1s state. Other choices are the xα potentials:
Kohn-Sham, Dirac-Hartree, and Dirac-Slater, which were
successfully employed in previous calculations of highly
charged ions [11,14–19]. Moreover, we have also
employed the Perdew-Zunger (PZ) potential [20] and the
local Dirac-Fock (LDF) potential derived by inversion of
the radial Dirac equation [21].
Let us now turn to the evaluation of the two-photon

exchange corrections to the g factor of Li-like ions. These
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corrections are defined by diagrams of third order in the
QED perturbation theory. The corresponding diagrams are
presented in Fig. 1. The electron propagators in the figure
have to be treated in the effective potential (we indicate this
diagrammatically via the triple-electron line). In contrast to
the case of the original Furry picture, in the extended Furry
picture, the additional counterterm diagrams appear. These
diagrams are depicted in the second line in Fig. 1. They are
associated with an extra interaction term represented
graphically by the symbol ⊗. Taking into account all
possible permutations of the one-electron states, in total, we
have to evaluate 36 three-electron, 36 two-electron, and 2
one-electron diagrams, respectively. All together, these
diagrams form the complete gauge invariant set of the
two-photon exchange contributions. The most difficult
ones are the 16 two-electron diagrams depicted in the first
line in Fig. 1. Each of these diagrams contains a threefold
summation over the complete Dirac spectrum and an
integration over the loop energy. Formal expressions for
the diagrams in the first line are similar to those derived for
the corresponding calculation of the hyperfine splitting and
can be found in Ref. [22]. The formulas derived there can
be taken over, but, instead of the hyperfine-interaction
potential, we employ here the interaction with a constant
magnetic field and keep in mind that the Dirac spectrum is
now generated by solving the Dirac equation with the

effective potential. The derivation of the formal expressions
for the diagrams of the second line is straightforward and
will be presented elsewhere. More details about the scheme
of the numerical implementations can be found in Ref. [22].
However, unlike the hyperfine splitting, in the case of the g
factor, the calculations are more involved due to the large
cancellations of various terms and poor convergence of the
partial-wave expansion. Nevertheless, we have substan-
tially increased the accuracy of all the numerical integra-
tions and extended the partial-wave summation up to
κmax ¼ 15. For a consistency check, we performed calcu-
lations both in Feynman and Coulomb gauges, and the
results are found to be gauge invariant with a very high
accuracy.
In Table I, the interelectronic-interaction corrections to

the g factor of Li-like silicon are given. The results are
obtained with four different starting potentials: Coulomb,
core-Hartree, Perdew-Zunger, and local Dirac-Fock poten-
tials. In the extended Furry picture, the interelectronic
interaction contributes already in the zeroth order, due to
the presence of the screening potential in the Dirac
equation. The one-photon (first-order) and two-photon
(second-order) exchange corrections have been evaluated
to all orders in αZ in the framework of a rigorous QED
approach. The higher-order corrections have been extracted
from the calculations performed by means of the large-scale

FIG. 1. Feynman diagrams representing the second-order interelectronic-interaction corrections to the g factor in local effective
potentials. The wavy line indicates the photon propagator, and the triple lines describe the electron propagators in the effective potential.
The dashed line terminated with the triangle denotes the interaction with the magnetic field. The counterterm diagrams are depicted in
the second line. The symbol the circled cross represents the extra interaction term associated with the screening potential counterterm.

TABLE I. Interelectronic-interaction corrections to the ground-state g factor of the Li-like 28Si11þ ion in various starting potentials in
units 10−6.

Coulomb CH PZ LDF

Zeroth order 348.267 321.632 349.636
First order 321.592 −33.549 −5.990 −33.846
Second order −6.876 0.137 −0.866 −0.976
Higher orders 0.085(22) −0.046ð6Þ 0.034(6) −0.005ð6Þ
Total 314.801(22) 314.809(6) 314.810(6) 314.808(6)
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configuration-interaction Dirac-Fock-Sturm method
described in Refs. [10,23]. As it was expected, the employ-
ment of the extended Furry picture increases the conver-
gence of the perturbation expansion. This allows us to
reduce the absolute uncertainty of the higher-order inter-
electronic-interaction corrections. Finally, the rigorous
evaluation of the two-photon exchange corrections and
the improved calculations of the higher-order terms allow
us to significantly increase the total accuracy of the
interelectronic-interaction terms for all ions under consid-
eration. For example, in the case of the 28Si11þ ion,
the previous result was 0.000 314 903(74) [10], while the
present calculation yields 0.000 314 809(6), and in the case
of the 208Pb79þ ion, instead of the previous value 0.002 140
7(27) [10], we now receive 0.002 139 34(4).
Let us now turn to the screened self-energy corrections

to the g factor of Li-like ions. In Refs. [12,13], these
corrections have been rigorously evaluated only for the
208Pb79þ and 238U89þ ions. The reasons for this are twofold.
The first reason is the large numerical cancellations which
occur in the point-by-point difference; the second is the
poor convergence of the partial-wave expansion. In order to
overcome these problems, we have performed the calcu-
lations in the extended Furry picture and employed a
special treatment of the many-potential terms. The
Feynman diagrams in the extended Furry picture corre-
sponding to the screened self-energy corrections to the g
factor are presented in Fig. 2. The corresponding expres-
sions derived in Refs. [12,13] remain formally the same but
keep in mind that the Dirac spectrum is now generated by
solving the Dirac equation with the effective potential. In
the second line of Fig. 2, the additional counterterm
diagrams are depicted. The derivation of the formal
expressions for them is relatively simple and will be
presented elsewhere. The employment of the extended
Furry picture allows us to substantially reduce the

numerical cancellations of different terms as well as to
improve convergence of the partial-wave expansion.
However, in order to improve the convergence even further,
we have employed a specific treatment of some many-
potential terms. The standard way to treat the vertex and
reducible corrections is to separate terms (zero-potential
contributions) in which bound-electron propagators are
replaced by free propagators. The remaining many-poten-
tial terms being ultraviolet finite are generally calculated
directly in coordinate space [24]. However, for gaining
better control over the partial-wave summation, we also
separate the so-called one-potential contributions. In this
way, the one-potential terms are treated in the momentum
space. Such treatment of the one-potential term was applied
in previous calculations of the one-electron self-energy
corrections to the g factor in Refs. [25–29] and to the
magnetic-dipole transition amplitude in Ref. [30]. Here, we
extend this procedure to the evaluation of the screened self-
energy corrections to the g factor. Performing the analysis
of the convergence of the partial-wave expansion for
different terms, we have found that such treatment should
be applied to the terms (C1) [Eq. (32)], (H3) [Eq. (38)], (I1)
[Eq. (47)], and (I3) [Eq. (49)] in Ref. [13]. The corre-
sponding one-potential contributions of the self-energy
(SE) part of the screened QED (SQED) corrections are
given by the expressions

ΔESEðC1Þð1Þ
SQED ¼−8πiα

X
P

ð−1ÞP
Z

d3pd3p0d3qd4k
ð2πÞ13

1

k2

× ψ̄aðpÞγμSFðp−kÞγ0½VeffðqÞSFðp−k−qÞ
×T0ðp−p0−qÞþT0ðqÞSFðp−k−qÞ
×Veffðp−p0−qÞ�γ0SFðp0−kÞγμψζbjPaPbðp0Þ
þða↔bÞ; ð1Þ

FIG. 2. Feynman diagrams representing the screened self-energy corrections to the g factor in local effective potentials. The wavy
line indicates the photon propagator, and the triple lines describe the electron propagators in the effective potential. The dashed line
terminated with the triangle denotes the interaction with the magnetic field. The counterterm diagrams are depicted in the second line.
The symbol the circled cross represents the extra interaction term associated with the screening potential counterterm.
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ΔESEðH3Þð1Þ
SQED ¼−8πiα

Z
d3pd3p0d4k

ð2πÞ10
1

k2
ψ̄aðpÞ

×
∂
∂εa ½γμSFðp−kÞγ0Veffðp−p0ÞSFðp0−kÞγμ�

×ψηaðp0Þþða↔bÞ; ð2Þ

ΔESEðI1Þð1Þ
SQED ¼−4πiα

Z
d3pd3p0d4k

ð2πÞ10
1

k2
ψ̄aðpÞ

∂
∂εa ½γμSFðp−kÞ

×γ0T0ðp−p0ÞSFðp0−kÞγμ�ψaðp0Þ
×
X
P

ð−1ÞPhabjIðΔÞjPaPbiþða↔bÞ; ð3Þ

ΔESEðI3Þð1Þ
SQED ¼−4πiα

Z
d3pd4k
ð2πÞ7

1

k2

× ψ̄aðpÞ
∂2

∂ε2a ½γμSFðp−kÞγμ�ψaðp0ÞhajT0jai

×
X
P

ð−1ÞPhabjIðΔÞjPaPbiþða↔ bÞ; ð4Þ

where p ¼ ðεa;pÞ, p0 ¼ ðεa;p0Þ, q ¼ ðεa;qÞ,
Δ ¼ εa − εPa, and the notation (a ↔ b) stands for the
contribution with interchanged labels a and b; γμ ¼ ðγ0; γÞ
are the Dirac matrices, SFðpÞ ¼ ðγ · p −mÞ−1 is the free-
electron propagator, the interelectronic-interaction operator
IðεÞ and its derivatives are defined in a similar way as in
Ref. [13], and Veff is the effective potential, being the sum
of the nuclear and screening potentials. T0 is the operator of
interaction with a constant magnetic field, which reads in
the momentum space

T0ðpÞ ¼ iμ0ð2πÞ3½α ×∇pδ
3ðpÞ� ·H; ð5Þ

where μ0 ¼ jej=2 is the Bohr magneton and H is the
magnetic field directed along the z axis. The wave function
jηai is given by the expression

jηai ¼
X
P

ð−1ÞP
�
jai

�
hζbjPaPbjT0jai þ hζajPbPajT0jbi

þ habjI0ðΔÞjPaPbi
�
hajT0jai −

1

2
hbjT0jbi

��

þ jξaihabjIðΔÞjPaPbi þ jζbjPaPbihajT0jai
�
; ð6Þ

and the wave functions jξi and jζi are defined similarly to
those in Ref. [12].
The ultraviolet-finite one-potential terms given by

Eqs. (1)–(4) have been evaluated in the momentum space.
The corresponding expressions in the coordinate space have
been subtracted from the related many-potential terms by
means of point-by-point difference. The partial-wave
expansion for the many-potential terms was terminated at
κmax ¼ 15, and the remainder of the sumwas estimated by a
least-square polynomial fitting and by the ϵ algorithm of
the Padé approximation. As a result, we have significantly
increasedtheaccuracyof thescreenedself-energycorrection.
In the case of the 28Si11þ ion, the previous result was
−0.000 000 218ð46Þ [10], while the present calculation
yields −0.000 000 242ð5Þ, and in the case of the 208Pb79þ
ion, instead of the previous value −0.000 003 3ð2Þ [12,13],
we now receive −0.000 003 44ð2Þ.
In Table II, the individual contributions and the total

values of the g factor for Li-like silicon 28Si11þ, calcium
40Ca17þ, lead 208Pb79þ, and uranium 238U89þ are presented
together with the previously reported theoretical results and
the experimental value for the case of silicon. The screened

TABLE II. Individual contributions to the ground-state g factor of Li-like ions and comparison with the previously reported theoretical
values as well as with the experimental result for the 28Si11þ ion.

28Si11þ 40Ca17þ 208Pb79þ 238U89þ

Dirac value (point nucleus) 1.998 254 751 1.996 426 011 1.932 002 904 1.910 722 624
Finite nuclear size 0.000 000 003 0.000 000 014 0.000 078 57(14) 0.000 241 62(36)
QED, ∼α 0.002 324 044 0.002 325 555(5) 0.002 411 7(1) 0.002 446 3(2)
QED, ∼α2 −0.000 003 517ð1Þ −0. 000 003 520ð2Þ −0.000 003 6ð5Þ −0.000 003 6ð8Þ
Interelectronic interaction 0.000 314 809(6) 0.000 454 290(9) 0.002 139 34(4) 0.002 500 05(6)
Screened self-energy −0.000 000 242ð5Þ −0.000 000 387ð7Þ −0.000 003 44ð2Þ −0.000 004 73ð3Þ
Screened vacuum polarization 0.000 000 006 0.000 000 017 0.000 001 53(3) 0.000 002 55(5)
Nuclear recoil 0.000 000 039(1) 0.000 000 061(2) 0.000 000 25(35) 0.000 000 28(69)
Nuclear polarization −0.000 000 04ð2Þ −0.000 000 27ð14Þ
Total theory 2.000 889 892(8) 1.999 202 041(13) 1.936 627 2(6) 1.915 904 8(11)

2.000 889 909(51)a 1.999 202 24(17)b 1.936 628 7(28)c 1.915 905 7(41)c

2.000 890 005(87)b

Experiment 2.000 889 889 9(21)a

aWagner et al. [6].
bGlazov et al. [10].
cGlazov et al. [13].

PRL 112, 253004 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
27 JUNE 2014

253004-4



self-energy and interelectronic-interaction corrections cal-
culated in this Letter allow us to substantially increase the
theoretical accuracy for all ions under consideration. The
other contributions to the g factor presented in Table II were
considered in detail in our previous studies [10–13].
Comparison with the experimental value for a Li-like
silicon ion provides tests of relativistic interelectronic
interaction on a level of 10−5, the one-electron BS QED
on a level of 0.7%, and the screened BS QED on a level of
3%. Thus, the current studies provide the most accurate test
of the many-electron QED effects in the case of the g factor.
The further improvement of the g factor theory for Li-like
ions requires at first the rigorous evaluation of the three-
photon exchange diagrams and the subsequent betterment
of the screened self-energy contribution for the intermedi-
ate-Z region, and the one-electron two-loop and nuclear
recoil corrections for the high-Z region.
The techniques and numerical methods developed can

also be extended for the g factor of B-like ions, where the
corresponding studies can also lead to an independent
determination of the fine-structure constant [31].
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