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The accurate evaluation of molecular properties lies at the core of predictive physical models. Most
reliable quantum-chemical calculations are limited to smaller molecular systems while purely empirical
approaches are limited in accuracy and reliability. A promising approach is to employ a quantum-
mechanical formalism with simplifications and to compensate for the latter with parametrization. We
propose a strategy of directly predicting the uncertainty interval for a property of interest, based on
training‐data uncertainties, which sidesteps the need for an optimum set of parameters.
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The accurate evaluation of molecular properties lies
at the core of predictive physicochemical models.
Examples can be found in current research in atmospheric,
materials, energy, and combustion processes. Quantum-
chemistry tools provide a solid base for molecular
computations. However, the most reliable quantum-
chemical calculations are limited to smaller molecular
systems while practical interests reside in increasingly
larger molecules.
In a purely empirical approach, a model is trained on—

i.e., parameters fit to—a limited set of chemical com-
pounds. The ability of such empirical models to make
reliable predictions far beyond the training set is obviously
indeterminate. To remove some of the empiricism, a
general strategy has been pursued of employing quantum
mechanics with simplifications that enable faster calcula-
tions. Most notable in this quest are the so-called semi-
empirical methods [1,2] where numerically costly parts of
the Hamiltonian are parametrized with values determined
by fits to experimental or high-level quantum-chemical
data. Over the years, several such optimized parameter sets
have been developed that showed improved performance
[1–5]. Another example is density functional theory (DFT).
Development of DFT functionals that tend toward the
formally exact nature of the underlying theory is an uphill
battle [6–13], and the lack of capacity for systematic
improvement is a recognized deficiency [6]. Fitting pro-
cedures are employed both at the level of exchange-
correlation functional design and construction of hybrid
functionals. The landscape of available functionals is
diverse and continues to grow.
All parametrized quantum-chemical methods share one

problem: uncertainty in their predictions is understood in
some “averaged” way, as an intrinsic value associated
with the specific method, e.g., a mean average deviation

over a reference data set. It is assumed that any follow-up
predictive calculation inherits the same effective uncer-
tainty. However, estimation of uncertainty in the predicted
value from the average deviation over the training set is
not a reliable strategy. Additionally, discrimination
among alternative models on the basis of effective
uncertainty is inefficient and leads to an abundance of
parametrized quantum-chemical methods similar to the
currently frustrating proliferation of combustion chemis-
try models [14].
Here we propose a different strategy: predicting directly

the uncertainty interval for a given property of interest
based on training‐data uncertainties, thereby sidestepping
the need for an optimum set of parameters. The proposed
approach is based on the uncertainty quantification frame-
work developed in a series of studies [15–20], called the
bound-to-bound data collaboration (B2BDC). It is an
optimization-based framework for combining models and
training data from multiple sources to ascertain the collec-
tive information content. The details of the B2BDC
methodology are described in the literature cited. We
describe those features pertinent to the present application,
using the specific system employed, thus making the
presentation more tractable. We begin with the system
description.
In this proof-of-principle study we consider vertical

ionization potentials (VIPs) of water clusters. Emergence
of these quantities in the context of atmospheric chemistry,
charging processes, and solvation phenomena confirms
their importance [21]. We pose a specific objective of
predicting the VIP of a water hexamer from VIP data of the
dimer to the pentamer. We choose to work with the double-
hybrid form of DFT that incorporates Hartree-Fock
exchange and correlation by second-order perturbation
theory [22,23],
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EXC ¼ ð1 − CHFÞEX-GGA þ CHFEX-HF

þ ð1 − CMP2ÞEC-GGA þ CMP2Eð2Þ ð1Þ

where EXC is the exchange-correlation energy, EX-GGA and
EC-GGA are the exchange and correlation energies, respec-
tively, in the generalized gradient approximation (GGA) of
DFT, EX-HF is the Hartree-Fock exchange energy, Eð2Þ is
the correlation energy from second-order Moller-Plesset
perturbation theory, CHF is the amount of Hartree-Fock
exchange, and CMP2 is the amount of MP2 correlation. The
calculations were performed using the GAMESS ab initio
package [5], employing a Pople 6-311G basis set with 2d-
and 1f-type polarization functions and a diffuse sp shell on
O atoms and 1p polarization functions added to H atoms
[24]. We do not expect the methodology presented here to
be very sensitive to the choice of a basis set. As an
indicator, the calculations were performed with basis sets
differing only by the inclusion of p functions on H. The
results showed that while some details changed, the sought-
after predicted intervals remained essentially the same. A
comparison is provided in the Supplemental Material [25].
The VIP is computed as the difference in total energy of

the ionized and neutral forms of the water cluster at the
geometry of the neutral form; the total energy in this case is
the sum of the nuclear energy, which remains unchanged,
and the electronic energy given by Eq. (1). The parameters
CHF and CMP2 in Eq. (1) can range from 0 to 1, and the
uncertainty is presumed to be encapsulated in these two
parameters. In doing so, analysis is limited to two dimen-
sions, facilitating visualization.
Following the usual optimization approach, one would

determine the optimal CHF and CMP2 values by fits to the
VIPs of a water dimer, trimer, tetramer, and pentamer and
then from these best-fit coefficients would proceed to
predict the VIP of the water hexamer. Following the
B2BDC framework, we ask not for the single set of the
best-fit parameter values, but for all possible parameter
combinations that predict the VIPs of dimer to pentamer
within their respective uncertainty bounds. This set of all
such parameter combinations is referred to as the feasible
set, F. If F is empty, i.e., there is no single combination
(CHF, CMP2) that satisfies inequalities VIPlowerbound ≤
VIP ≤ VIPupperbound for all the training data (namely,
dimer, trimer, tetramer, and pentamer), then our data-model
system is said to be inconsistent. There could be several
reasons for this: the training data could be incorrect, the
uncertainty bounds could be overoptimistic, or the model
represented by Eq. (1) is inadequate to capture the under-
lying physics. Identification of the inconsistency and the
factors causing or affecting it is revealing in its own right
and constitutes one of the distinguishing features of the
B2BDC approach [15]. Here, as we will see shortly,
our data-model system is consistent and, hence, we can
proceed with the next step of the analysis, prediction of the
unknown values.

Every point of a nonempty F is a combination of
parameters CHF and CMP2 that maps to a value for the
property we seek to predict, i.e., the VIP of the hexamer,
which is consistent with the training VIPs. Collectively, all
points in F result in an interval of predicted hexamer VIP
values. The latter encompasses all the uncertainties of the
input data, and is obtained without identifying the best-fit
(CHF, CMP2) point. Such a direct transfer of uncertainties is
more accurate than the two-step process of first fitting the
parameters [20]. A further benefit of the strategy outlined of
prediction on the feasible set is the relative ease of adding
new training data without the need for determination of new
best-fit CHF and CMP2 parameters. We next demonstrate
these features with the water-cluster example.
First, we select the training data. The accurate meas-

urement of VIPs is difficult [26], so the training-data
uncertainty ranges were taken from previously reported
high-level quantum chemical calculations including CCSD
(T), CASPT2//CASSCF, and CASPT2 [26] and fixed node
diffusion Monte Carlo (FNDMC) calculations. The geom-
etries used for the VIP double-hybrid single point energy
calculations were taken from the MP2/aug-cc-pVDZ cal-
culations of Segarra-Marti et al. [26] (abbreviated as SMR
throughout the text).
In the next step, we construct a response surface [27]

relating the two double-hybrid parameters CHF and CMP2
to the VIP values calculated through the double-hybrid
DFT for each molecular system. Representing the rela-
tionships between the parameters and properties via
simple functions facilitates rapid evaluation during the
analysis. The response surfaces for the present study were
second-order polynomials. They were created by Latin
hypercube sampling [27,28] of the CHF − CMP2 space. The
initial sampling was performed over the complete varia-
tion ranges of CHF and CMP2, namely [0, 1], and using
smaller ranges as information on F boundaries became
available, see below. The calculated VIPs at the sampled
points and the fitted response surface for the dimer are
shown in Fig. 1(a). The response-surface fits, fitting
errors, points sampled, and VIPs calculated at those
points for all cases of the present study, are included in
the Supplemental Material [25].
We are now ready to begin the analysis. The intersection

of the dimer VIP bounds with the response surface identifies
the feasible set for the dimer VIP [Fig. 1(b)]. Any combi-
nation of the CHF and CMP2 parameter values from the
feasible set will yield values consistent with the given
dimer VIP range. The feasible sets obtained for
all molecular structures of the training set are shown in
Fig. 1(c). The dimer through pentamer VIP bounds,
taken from SMR, are shown in Table I. As can be seen in
Fig. 1(c), the individual feasible sets have a common,
overlapping area, outlined in red. This is the feasible set
of our combined data-model system. Its existence, as
discussed above, indicated that our data-model system is
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consistent and we can proceed to a prediction of a modeled
unknown.
For the unknown quantity we chose the VIP of water

hexamers, shown in Fig. 1(d) for the hexamer-book geom-
etry [26]. In a manner similar to the water dimer above, we
developed a response surface for the hexamer-book VIP,
colored in blue in Fig. 1(d). The projection of the established
data-model feasible set onto this response surface selects a
patch (in red) of the hexamer-book response surface. Each
point of this patch, through its relation to F, identifies the
hexamer-book VIP values that are consistent with the given
VIP uncertainty ranges of dimer, trimer, tetramer, and

pentamer. The lowest and highest points of the patch specify
the predicted range for the hexamer-book VIP, thus answer-
ing the posed question.
It is pertinent to mention again that limiting the analysis

to only two parameters, CHF and CMP2, makes possible
graphical visualization of response surfaces, direct identi-
fication and display of feasible sets, and hence a more
descriptive illustration of the main ideas of the approach.
The B2BDC framework, which is the source of the ideas
presented here, was developed to handle high-dimensional
systems and response surfaces of various mathematical
forms [17]; for instance, one of the examples was natural-
gas combustion with a training set of 77 experimental
observations and 102 active model parameters. The com-
putational methodology of B2BDC is built on constrained
optimization methods that generate uncertainty bounds
from training data for the quantity of interest [18].
To obtain response surfaces of higher fidelity, the process

described can be repeated iteratively by shrinking the
sampling domain. Initially, the sampling was done over
the entire domain of the parameter space. This may lead to
differences in response-surface fits, but does provide an
approximate mapping of the overlap region, and it is the
overlap region that is the ultimate outcome from the
analysis. In the next round of response-surface building,
sampling is performed over a smaller space of parameters
limited to the area surrounding the overlapping feasible set
identified in the first round—results presented in Fig. 1
were calculated at this level. If the quality of this next-
round response surfaces is still inadequate, improvements
can be made by dividing the domain into parts and creating
response surfaces for each, i.e., a piecewise sampling
strategy [17,29]. The final results of the present work were
obtained using this strategy.
The iterative domain restriction and piecewise building

of response surfaces were necessitated by encountered
difficulties. For small water cluster ionization, atCHF values
below ∼0.6, the double-hybrid DFT calculations for cations
converged to solutions where the unpaired electron was
highly delocalized over O atoms, leading to ∼20 kcal=mol
shift in VIP and, in turn, to poorly fit response surfaces and
to data-model inconsistency. This behavior was resolved by
using an initial guess with high spin localization and slight
perturbations to the cluster geometries, thereby increasing
the range of spin-localized cationic solutions from ∼0.6–1
to ∼0.5–1 for the CHF parameter. As shown in Fig. 1(c), the
overlap region does not extend below CHF ¼ 0.55, and so
leaving out the lower domain of CHF did not affect the final
results. The effect of the geometry perturbation on the
neutral energy calculations was negligible, not exceeding
0.07 kcal=mol for all cases.
The average and largest deviations of the response

surfaces shown in Fig. 1 were 0.14 and 1.87 kcal=mol,
respectively. With the domain divided into two, at
CHF ¼ 0.65, the respective deviations decreased to 0.03

FIG. 1 (color online). (a) Response-surface construction: the
stem plot points are from double-hybrid calculations for the dimer
VIP at the sampled points; the surface (blue) is the fitted response
surface. (b) Feasible set construction: the two horizontal planes
intersecting the response surface are the dimer VIP upper and
lower bounds; the projection of the response surface patch
between these values onto the CHF-CMP2 plane is the dimer
feasible set. (c) Intersection of the feasible sets for the dimer
(blue), trimer (light green), tetramer, and pentamer (overlapped
by dark green) yields an overlapping feasible set (outlined in red).
(d) The overlapping feasible set (red area in the CHF-CMP2 plane)
is projected onto the response surface of hexamer-book geometry
(blue). The lowest and highest points of the response-surface
patch (red) constructed over the overlapping feasible set deter-
mine the predicted range of hexamer-book VIP.

TABLE I. VIP bounds for the dimer through pentamer water
clusters [26].

Water cluster VIP bounds (kcal=mol)

Dimer 270.3–273.7
Trimer 282.7–285.0
Tetramer 281.1–283.9
Pentamer 279.0–281.8
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and 0.36 kcal=mol. As discussed above, reducing the
domain size is one of the possible strategies: namely, start
with a large domain and a coarse fit of response surfaces,
narrow to a smaller domain with a better fit, and finally, if
needed, split the domain. In this way, high-fidelity response
surfaces can be constructed.
Following the above methodology, predictions were

computed for four geometries of the water hexamer and
are shown in Fig. 2. The top intervals (colored green) for
each hexamer geometry represent the VIP results reported
by SMR. The next intervals (colored red) are the predic-
tions based on the feasible set calculated with the piecewise
domain. The average and maximum response-surface
fitting errors for these four hexamer geometries were
0.04 and 0.39 kcal=mol, respectively (the details are
included in the Supplemental Material [25]).
Comparison of the predicted with SMR data indicates

general consistency among the two sets, thus corroborating
the proposed methodology. In all four cases, the two sets of
intervals have overlapping regions, which indicates that if
the hexamer data were included in the data-model system
(to predict, say, a heptamer), the system would be con-
sistent. Further comparison shows that the predicted
intervals for the prism and ring geometries are essentially
of the same length as the SMR data and, more significantly,
the predicted intervals for the book and cage geometries are
half the SMR values. The latter indicates that the proposed
methodology may offer a possible strategy for improving
predictive accuracy.

To test this supposition further, we recomputed the VIP
of the water dimer but now with a higher-level quantum
chemistry, namely, FNDMC calculations (the details are
reported in Supplemental Material [25]). The FNDMC
calculations narrowed the SMR dimer VIP values from
270.3–273.7 to 272.8–273.1 kcal=mol. The narrower
uncertainty interval for the dimer VIP resulted in the much
smaller overlapping feasible set, colored blue in Fig. 3. The
smaller feasible set, in turn, yielded increased response-
surface accuracy, reducing the average and maximum fit
errors to 0.014 and 0.15 kcal=mol, respectively, for the
dimer through pentamer, and to 0.026 and 0.25 kcal=mol
for the hexamers (the details are included in the
Supplemental Material [25]).
The VIP intervals predicted with the new feasible set are

shown in Fig. 2 as the third interval for each isomer, colored
blue. Inspection of these results indicates that with the
smaller feasible set the predictions for the hexamer VIPs
are significantly smaller, by about a factor of 2 compared to
the SMR data.
We conclude with the following remarks. Parametrized

methods are likely to play an increasingly central role in
theoretical and computational chemistry. Moving toward
reliable model predictions requires rigorous quantification
of uncertainties, from placement of realistic bounds on
the training data to their effect on model outcomes. The
approach presented here offers such capability. Also, the
methodology demonstrated suggests a path for model
validation via analysis of data-model consistency and data
integration via merging individual feasible sets.
The present approach replaces the ill-conditioned and

humanly tedious process of model re-optimization [29] with

FIG. 2 (color online). VIP intervals of the four hexamer
conformers. First, green: intervals reported by Segarra-Marti
et al. [26]; second, red: predictions of this work without the
inclusion of the FNDMC results; third, blue: predictions of this
work including the FNDMC calculations. The numerical values
are listed on the right, and the values in parentheses are the
predicted intervals.

FIG. 3 (color online). Feasible sets obtained before (red, larger
area) and after (blue, small area inside red) the inclusion of the
dimer FNDMC calculations.
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every new piece of evidence by a methodologically simpler
process of rendering feasible sets. The response surfaces
underlying the methodology are reusable and readily adapt-
able to parallel computing. Altogether, these features are
amenable to crowdsourcing and collaborative science.
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